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Local Convergence for Multistep Simplified Newton-like Methods

Toannis K. Argyros
Department of Mathematical Sciences
Cameron University
Lawton, OK 73505, USA
E-mail: iargyros@cameron.edu.

Abstract. In this paper we provide a local convergence analysis for
multistep Newton-like method (1.3) in order to approximate a so-
lution of the nonlinear equation (1.1) in a Banach space setting. A
refined and more flexible than before local [4]-[7] local convergence
analysis of multistep simplified Newton-like methods for approxi-
mating solutions of nonlinear operator equations in Banach space is
provided, by approximating not only the differentiable (see [4]-][7])
but also the non differentiable part (see also [1],[2]). A numerical
example is used where our results compare favorably with earlier
ones [4]-[7].

AMS (MOS) Subject Classification Codes: 65H10, 65J15, 47H17, 49M15.

Key Words: Local convergence, Banach space, radius of convergence, Fréchet
derivative, Multi-step simplified Newton-like method.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution of equation

F(z) = f(z) +9(z) = 0, (1.1)

where [ is a Fréchet-differentiable operator, g a continuous operator both defined
on an open convex subset D of a Banach space X with values in a Banach space Y.
Newton-like (single step) method of the form

2" =g — A(x™) " F (™) (>0 (1.2)

has been used by several authors to approximate z* [1]-[6]. With the exception of
the works in [1]-[3] the authors take A(z) € L(X,Y) (the space of bounded linear
operators from X into Y') to be a conscious approximation to the Fréchet-derivative
F'(z) of operator F. A survey of local and semilocal convergence results for method
(1.2) can be found in [2].

However as already stated in [1], [3] there are several advantages (see Remark 3)
if A is related not only to F’ but also to the difference g(z) — g(y). Here we extend
these advantages (in the local convergence case) following some ideas in [5].
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2 Ioannis K. Argyros

In order to compute each iterate in method (1.2) we solve the linear system
A(z™)z = —F(z™) and then set 2" = 2™ + z (n > 0). The computation of A(z™)
may be very expensive or impossible in general (for every n > 0). In practice we
wish to use A(z™) instead of A(z™ 1), ..., A(z"*™) to minimize the computational
cost. That is why in [5] the multistep simplified Newton-like method was introduced
for g € D in the form:

20 — g
gt =g = AT E@E™TY), i=1,2,..,m (1.3)
"t =g»™ (n>0),
where m is a natural number. Note that for m = 1 method (1.3) reduces to (1.2)
which includes the so called simplified Newton-like method
"t =g" — ATIF(z") (n2>0), (1.4)

with a constant linear operator A.

If m = +o0 in (1.3) then the sequence {z%%} also coincides with the one gener-
ated by (1.4) with A = A(x%). That is why in this study we assume m is finite.
Local convergence results for method (1.3) were given in [5] for the interesting case
g # 0 and m > 1. Here we show that under weaker hypotheses and the same
computational cost the results in [5] can be improved (see more precisely Remark
3).

A numerical example is provided to justify the advantages of our approach over
the ones in [5].

2. LocAL CONVERGENCE ANALYSIS OF SIMPLIFIED NEWTON-LIKE METHOD
(1.3)

- Suppose that equation (1.1) has a solution z* € D. We assume that there exists
positive constants rg, K, g, n and nonnegative constants ¢, e and an invertible
linear operator L, such that for any

z,y €U(x*,ro) ={z € X |||z — z*|| < 7o} C D,
A, A e LY, X), A= A1 + As,
A(z)™' € L(X,Y)
such that
[A@) 7Ll < g,
”A(m)_lF(m)” <7,
L7 (@) ~ A < K llz —yll +e,
IL7 o(z) — g(y) — Az(2)(z — )| < ellz ~ 9.
Define the scalar sequence’{t, ;} by
tho =0, tn;=8,(tniz1),2=1,....m+1,n>0
where
sn(t)=q(Et+c+e)t+m,

Mo =1 Tin = tn—l,m—i—l —tp—1m M > 1



Local Convergence for Multistep Simplified .... 3

Clearly s,(t) is an increasing function of ¢t > 0. Therefore we have t,; < tn 1.
Further, define

t* Z mln(ma.X tn,m—l) 2T0),
n

Kt*
bzq( 5 +c+e>,

2(1 —b)
gK '

™ =

and
_ 9K
=5
We can state and show the local convergence theorem for Newton-like method (1.3).

Theorem 1. Under the above assumptions, set r* = min{rg,r1}. If b € [0, 1), then
Ulx*,r*) is a convergence ball for (1.8). Moreover the following estimate holds for
alln>0:

[27*! —2*|| < a(llz" — 2" + )™ [l2" — 2| < p™ 2" — 2", (25)

where,

p=alz’—z*|+b€0,1).
Proof. Let z° € U(z*,r*). Then we have
p<ar*+b<ar,+b=1

We shall prove the first inequality in (2.5) using induction on & > 0. We must
show

|zF — 2% M| < tgy — thio1 = Lm (2.6)
and
|z%* — 2*|| < (a||z* — 2*|| + b)* ||z — «*||, i =1....m (2.7)
For k =0, we have
2% =2} = [l = 2°|| = [|A(=") " F @] <n —to1 = tar ~ oo
and
297 = 2| = || - A@*) 7 (F®) - F*) - A@°)(° —2")]

<q

1
A L_l(f'(.’lj* +t(mo _ .’L'*)) —Al(.’ljo))dt(.’llo _ .’L'*)
+q[|L7 (g(a®) — g(z*) — Aa(2")(a° — =)
K
<gq (? [|=° —z*|| —l—c—i-e) ]l:co - m*”

< (af]® — 2" + ) [}« — 27|
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This implies that if m = 1, then (2.6) and (2.7) hold for k = 0. If m > 2, then we
have by induction on ¢

i
||1L'0’i — :BOH < min {Z(to,j —to-1), on’i -z 0 * }

j=1
_<_ min(t[]’i, 27‘0) S min(t[],m_l,?/‘g) S t*
I|x0,i—1 _ xO,iH < ||L—1 O,i) _ A(:L'O)( 0,4 $0’i_1) _ F(iEO’i_l))H

<q< /Ht l—t)([“_l‘:vo)“dt—kc—ke)

]

X Ha:
<gq ( (to; —toi—1) + ¢+ 6) (tos —to,i—1) = to,i+1 —to,

and

||$0,i+1 _

= |- A®) " (F(2"F) - F(a®) - A@®)(@* — 2*))
0

<q(£(e 0 at) 4 et ) o |
<q (s ) ]

< e | e ]+ o

= (o | + 5 [a® ~°|.

This proves (2.6) and (1.1) for the case k = 0.
Assume now that (2.6) and (1.1) hold for some k. Then we have

g0 = g+ = ghm e U(at, 1)
and

Hil,'k+1’1 _ $k+1,0 ||

— ||$k+1.1 _ $k+1|| ‘

< I‘A($k+1)—1L‘l HL_I(F(Z'k’m> _ A(.Z’k)(fl'k’m _ xk,m—l) _ F<$k,m—1))”
<q ("™ = 2F||+ P =2 ) + et e) B = 2P|

< q (5 thm + thm-1) +e+¢) (thym — tim—1) = thymt1 — thom = Me—1.

By the same argument as for & = 0, we can prove that (2.6) and (2.7) hold for
k + 1. This completes the induction and the proof of the theorem. O

Setting L = A(z*) in Theorem 1, we obtain the following:

Corollary 2. Assume that A(z*) is nonsingular and for any z € D, the following
hold: '

—~ W) <Kllz—y| +c
—A@)| £ Lle -2 +d
| A(z*) " g(z) — g(a™) — As(z)(x — 2%)]

| <ellz—z*|
p=ct+d+e<l1
Then
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(i) The ball U(z*,r*) with r* = 2(1 — p)/(3K + 2L) is a convergence ball for
the iterative method (1.3) with any m, provided that U(z*,r*) C D. The
speed of convergence is estimated as follows:

[27 ! — ¥ = 2™ ~ 2*|| < (allz”™ — 27| + )™ [|l2" — 27| < p™ 2" — &7

where
K e
a= 2(1—3er4)’ b= 1—CL+r—d
p:a||x0—ac*H+b< 1
(il) The ball U(z*,m*) with r* = 2(1 — p)/(K + 2L) is convergence ball for the
iteration (1.4) and
Tl
~1-Lr—-d
provided that U(z*,r*) C D.

Hxn-i-l _ .’13*

5 lla™ =2 + c+e) 2" — a7

Proof. (see Corollary 1 in [5, p.19]). O

Remark 3. If we set

, Ay =0 and A; = A (2.8)
our results reduce to the corresponding ones in [4]. Otherwise our results have the
following advantages over the ones in [4]: more flexible choices of operator A (i.e A;
and A,); finer error bounds on the distances “z”*’l —z* H ;and a larger radius of r*.
That is we can obtain a desired error tolerance ¢ with fewer computations, a larger
m can be used and there is a wider choice of initial guesses 20 available. Such an
information is important in computational mathematics and scientific computing

[1], [2]. In what follows we provide an example. For simplicity we take m =1, and
A(z) = L.

Example 4. Let X =Y = (R?,|-||_.). Consider the system [3]:
3z +¢y> —1+|z~1=0 (2.9)
ety -1+ 1y =0
It can easily be seen that the solution of (2.9) is given by
z* = (.8946553334687, .327826521746298) (2.10)

Set for v = (v1,02), [[v]|oe = [[(v1,02)lloe = max{fvr], |val}, F(v) = f(v) + g(v),

f(’U) = (flan) ) g(’U) = (glag2)'
Define

fi() =3vive + 03 =1, fa(v) = v +v105 — 1,
g1(v) = o1 = 1], g2 (v) = |vg].
We shall take divided differences of order one [z,y; f], [z,y; 9] € Max2(R) to be for
w = (wy,ws):
filwy,we) — fi(vi, wa)
w; — U1
fi(ﬂhwz) - fi(U1,U2)

wz — V2

[U’ w; f]i,l =

[U7w§f]i,2 =
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provided that wy # vy and wy # va. If w1 = vy or wy = vy replace [z,y, f} by f'.
Similarly we define

gi{wi, wa) — gi(vy, ws)

v, w; g, 4 =

[v,w;g); , g

[v,w; gl; , = gi(v1, wa) — gi(v1,v2)
Wy — V2

for wy # v1 and wa # ve. If wy = vy or wy = vy replace (z,y;g] by the zero 2 x 2
matriz in Myx2(R). We consider a possible choice for operator A as suggested by
the hypotheses in [5):

A(w) = A1 (v) = F'(v), and Ay =0.

Then, using Newton’s method (1.2) in this case for z° = (1,0), we obtain Table
1. Moreover, if we choose: A(v,w) = Aj{v,w) = [v,w;g|, and Ay = 0, i.e. the
method of Chord or Secant method (1.2), we obtain Table 2, for z~* = (5,5), and
20 = (1,0). Furthermore if we choose: A = Ay + Az, where A1(v,v) = F'(v) =
[v,v; f], and Ax(v,w) = [v,w;g] for 7> = (5,5), and z° = (1,0) our method
(1.2) provides Table 3. Tables 2 and 3 show the superiority of the results obtained
here, over the results in [5] using Table 1. Finally, although the superiority of our
results over the ones in [5] has already been established, we note that if e.g., we let
z7! = z7, 2° = 13 (chosen from Table 3), then hypotheses of Theorem 1 hold for
K=g=1e=.25c=0,p=rg=1077TF — 14, 7" = rp, and t* = 2rp.

TABLE 1.

n_z 2 |5 — Zn_sl
0 1 0

1 1 0.333333333333333  3.333E-1
2 0.906550218340611  0.354002911208151 9.344E-2
3 0.885328400663412  0.338027276361322 2.122E-2
4 0.891329556832800  0.326613976593566 1.141E-2
5  0.895238815463844  0.326406852843625 3.909E-3
6 0.8951546711372635 0.327730334045043 1.323E-3
7 0.894673743471137  0.327979154372032 4.809E-4
8  0.894598908077448  0.327865059348755 1.140E-4
9  0.894643228355865  0.327815039208286 5.002E-5
10 0.894659993615645  0.327819889264891 1.676E-5
11 0.894657640195329  0.327826728208560 6.838E-6
12 0.894655219565091  0.327827351826856 2.420E-6
13 0.894655074977661  0.327826643198819 7.086E-7
39 0.89455373334687  0.327826521746298 §5.149E-19
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TABLE 2.

ns

B

|2 — Zn1]|

E

OIS ULk WO

5

1

0.989800874210782
0.921814765493287
0.900073765669214
0.894939851625105
0.894658420586013
0.894655375077418
0.894655373334698
0.894655373334687
0.894655373334687

5

0

0.021627489072365
0.307939916152262
0.325927010697792
0.327725437396226
0.327825363500783
0.327826521051833
0.327826521746293
0.327826521746298
0.327826521746298

5.000E+00
1.262E-02
2.953E-01
2.174E-02
5.133E-03
2.814F-04
3.045E-04
1.742E-09
1.076E-14
5.421E-20

TABLE 3.

D

B

”xn — Tn-1 ||

Y UL W~ O

5]

1

0.909090909090909
0.894886945874111
0.894655531991499
0.894655373334793
0.894655373334687
0.894655373334687

5]

0

0.363636363636364
0.329098638203090
0.327827544745569
0.327826521746906
0.327826521746298
0.327826521746298

5
3.636E-01
3.453E-02
1.271E-03
1.022E-06
6.089E-13

 2.710E-E20
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Abstract. This paper presents an implementation of the integral
equations with the generalized Neumann kernel to solve numerically
the uniquely and the non-uniquely solvable Riemann-Hilbert prob-
lems in Jordan regions with smooth boundaries. The non-uniquely
solvable problems are made uniquely solvable by requiring their so-
lutions to satisfy additional constraints. Two type of constraints
are presented. Various test numerical examples are presented. The
computational efficiency appears significantly excellent.

AMS (MOS) Subject Classification Codes: 30E25; 45B05; 45P05; 65R20.

Key Words: Riemann-Hilbert problem, Generalized Neumann kernel, Fredholm
integral equation, Nystrém method.

1. INTRODUCTION

The boundary integral equation method is an inexpensive, flexible technique
to solve the elliptic boundary value problems on a simply connected region in the
plane Q. The reformulation of the boundary value problem as an equivalent integral
equation over the boundary of €2 reduces the dimensionality of the problem which
makes the method an efficient tool for complicated engineering problems.

Riemann—Hilbert problems on ) are the prototypical examples of elliptic sys-
tems of differential equations in the plane (see e.g., Wendland [15]). The Dirichlet
problem for Laplace’s equation, which is one of the classical elliptic boundary value
problems, is a special case of the Riemann-Hilbert problem.

The boundary integral equation method is a classical method for solving the
Dirichlet, problem (see e.g., Atkinson [1, Ch. 7] and Henrici [4, §15.9]). When the
Dirichlet problem solved by the double layer potential representation, a boundary
integral equation with a continuous kernel results. The kernel is known as the
Neumann kernel [4, pp. 282-286].

The Riemann-Hilbert problem can also be solved using boundary integral equa-
tion [11, 8, 6, 7, 14]. Sherman [11] used a generalization of the double layer poten-
tial representation to derive a boundary integral equation with a continuous kernel
for the interior Riemann-Hilbert problem (see e.g., Gakhov [3, p. 400]). Using

9



10 Mohamed M. S. Nasser

a similar approach, a boundary integral equation can be derived for the exterior
Riemann-Hilbert problem. The kernel of the both boundary integral equations is,
as expected, a generalization of the Neumann kernel.

Recently, Murid and Nasser [8, 6, 7] used a different approach to derlve two
new boundary integral equations for the interior and the exterior Riemann-Hilbert
problems. The kernel of these integral equations is the same kernel of the integral
equations derived in [11]. This kernel was called in [7] the generalized Neumann
kernel. The properties of the generalized Neumann kernel has been studied in [7]
and more extensively in [14].

The boundary integral equation method is a popular method for solving the
Dirichlet problem [1]. However, this is not the case for the Riemann-Hilbert prob-
lem. Riemann-Hilbert problems in Jordan regions are often solved by conformal
mapping of the region to the unit disk where the problem can be solved in a closed
form using the harmonic conjugation [2, 3, 4]. Gakhov introduced the concept of
regularizing factor to reduce the Riemann-Hilbert problem to three Dirichlet prob-
lem in the same region of consideration (see e.g., Gakhov [3, p. 222] and Begehr |2,
pp. 45-69]).

The current paper extends the results of the previous papers [8, 6, 7, 14, 10]. The
papers [8, 6, 7, 14] were concentrated on the deriving and studying the solvability
of the integral equations. Although, the paper [10] consider the numerical solution
of the Riemann-Hilbert problems, only the integral equations derived in [7] were
used. The non-uniquely solvable Riemann-Hilbert problem was solved by requiring
their solution to satisfy additional constraints. Only one type of constraints was
present in [14, 10].

The main propose of this paper is to present the numerical treatment of the
integral equations with generalized Neumann kernel and the applications of the
integral equations to solve the Riemann-Hilbert problems. We shall consider the
integral equations derived in [11] as well as the integral equations derived in [8,
6, 7]. For the non-uniquely solvable Riemann-Hilbert problems, we present two
type of constraints to reduce the problems to uniquely solvable problems. Some
results of the original work [7, 14, 10] are included to allow this paper to be read
independently.

This paper is organized as follows. In §2 we review some auxiliary results. The
Riemann-Hilbert problems and the integral equations for the Riemann-Hilbert
problems will be reviewed in §3. The solutions of the interior and the exterior
Riemann—Hilbert problems in terms of the solution of the integral equations will
be given in §4 and §5, respectively. The numerical implementations will be given
in §6. Some numerical examples will be given in §7 and a short conclusion will be
given in §8.

2. AUXILIARY MATERIAL

Let 2 be a bounded simply connected Jordan region with 0 € 2. The boundary
I := 9 is assumed to have a positively oriented parametrization n{s) where n(s)
is a 2m-periodic twice continuously differentiable function with 7(s) = 3—;’ # 0. The
exterior of T' is denoted by Q2.

For a fixed o with 0 < o < 1, the Holder space H® consists of all 27-periodic
real functions which are uniformly Hélder continuous with exponent «. A Holder
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continuous function & on ' can be interpreted via h(s) := h(y(s)) as a Hélder
continuous function h of the parameter s and vice versa.

Let A(s) be a complex econtinuously differentiable 2w —periodic function with
A #0. With v, u € H?, let the function ®(z) be defined by

‘__1_ y+ip dn
() = 27ri/r o, gT 2.1)

Then ®(z) is analytic in Q as well as in 2~ and the boundary values ®* from inside

and ®~ from outside belong to H* and can be calculated by Plemelj’s formula
1y(¢) +ip(Q) | 1 / y(m) +ip(n) dn

()= TN , CeTl. 2.2

O=%740 Tmh Aw n-¢ 22

The integral in (2.2) is a Cauchy principal value integral. The boundary values
satisfy the jump relation

APt — APT =y +ip. (2.3)
We define two real functions N and M by
1 (AG) i)
Mo = m (G (24
1 s=t 1 A(s)  A(t)

The function N(s,t) is called the generalized Neumann kernel formed with A and
n [7, 14].

Lemma 1 ([14]). (a) The kernel N{s,t) is continuous with

_ 1o (1) A)
N(t,t) = ;Im (5% - m) : (2.6)
(b) The kernel M(s,t) is continuous with ‘
_ 1o (Li) _ A@)
M(t,t) = ~Re (5W - W) . 2.7)

The integral operators with the kernels N and M will be denoted by N and M,
ie.,
27

W) = [ N Oud, (2.8)

27

Mp)(s) = ; M (s, t)p(t)dt. (2.9)

The eigenvalues of the operator A have been studied in (7, 14]. It turns out that
the dimensions of the spaces Null(Z + N) depend upon the index of the function
A which is defined as the winding number of A with respect to 0

1
k= ind(A) = . arg(A)[2™ (2.10)

i.e., the increment of the argument of A in traversing the curve I' in the positive
sense divided by 2.
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Theorem 2 ([14]).

dim(Null(Z — N')) = max(0, —2x + 1), (2.11)
dim(Null(Z + N')) = max(0, 2k — 1). (2.12)

Let the complex-valued functions A(t) be defined by
Aft) = 0(t)/A(t). (2.13)

and let N(s,t) be the generalized Neumann kernel formed with A and 7. Then the
adjoint kernel N*(s,t) of the generalized Neumann kernel N(s,t) can be written as

) - 1 Alt)  n(s)
N*(s,8) = N<t75>—;lm<?@m>

_o L (A al) Y s,
= -1 <;1(t)n(t)—n(s)) N(s,t). (2.14)

Let also the complex-valued functions Ag(s) and A;(s) be defined by

Ao(s) = n7"(s)A(s), (2.15)
Ai(s) = ' TR(s)A(s). (2.16)

Then the generalized Neumann kernel formed with A; and 7 will be denoted by
N;(s,t), i =0,1. Similarly, the continuous kernel M;(s,t) is defined as in (2.5) with
A-replaced by A;, i = 0,1. The integral operators with the kernels N , No, Mg, N¢
and M are denoted by N, Ny, Mg, N1 and M, respectively.

The conjugation operator X is defined by

s—t

2r
(Kp)(s) := —1—/ u(t) cot dt. (2.17)
2 0
The operator K is also known as the Hilbert transform (see e.g., Henrici [4, p. 107]
and [5]).
Let 29 = ag —ify be a given point. Other assumptions on 2y will be given latter.
We define the continuous real-valued functions a(t), b(t), P(t) and Q(¢t) by

a(t) +ib(t) = 2_171#)%5 (2.18)
P(t) = aga(t)+ Bob(t), (2.19)
| Q) = pPoal(t) — aeb(t). (2.20)
Then we define the integral operators P and Q by
P = [ PO (2.21)
@) = [ Quo (2.2

The functions Pp and Qu are constants on [0, 27).
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For a given set of points r; € [0,27), ¢ = 1,2,...,m, m > 0, we define the
integral operator R,, by

fZ’TN (ri,t)u(t)dt

Jo T N(ra, t),u t)dt

(Rt (5) = (2.23)

27
fo N (rm,t)u(t)dt
3. INTEGRAL EQUATIONS FOrR THE RIEMANN-HILBERT PROBLEMS

3.1. The Riemann-Hilbert Problems. For v € H%, the Riemann-Hilbert (RH)
problems are defined as follows:
Interior RH problem: Given functions A and «, it is required to find a function f
analytic in © and continuous on the closure § such that the boundary values f+
satisfy

Re[A(s)fT(n(s))] = v(s) for all s. (3.24)
Exterior RH problem: Given functions A and +, it is required to find a function
g analytic in Q™ and continuous on the closure O~ with g(0o0) = 0 such that the
boundary values g~ satisfy

Re[A(s)g™ (n(s))] =v(s) forall ,s. (3.25)

3.2. The Solvability Of The Rh Problems. The solvability of the RH problems
depend upon the index & = ind(A) [3]. The interior RH problem (3.24) is not
necessary solvable for k > 0. It is solvable only if

v € Null(T — N)*. o (3.26)
Similarly, the exterior RH problem (3.25) is solvable for x < 0 only if

v € Null(T + N)*. (3.27)
If v satisfies these conditions, then the RH problems are uniquely solvable (sce e.g,

[14)).

The interior RH problem for « < 0 and the exterior RH problem for « > 0 are
non-uniquely solvable. The general solution of the interior RH problem containg
—2k+1 arbitrary real constants and the general solution of the exterior RH problem
contains 2« — 1 arbitrary real constants.

To reduce the non-uniquely solvable RH problems to uniquely solvable problems,
we need to define the following two analytic functions ¥ and Z. Suppose that
v € H®. The Schwarz operator S; for the region {2 is an operator which determines
the the unique analytic function F(z) := (S;v)(2) in € such that F(0) is real and
ReF* = . Similarly, the Schwarz operator S, for the region Q= is an operator
which determines the the unique analytic function G(z) := (S.v)(2) n @~ U {co}
such that G(oco) is real and ReG~ =« (see e.g., [3]). Using the Schwarz operators
S; and 8., we define the two analytical functions ¥ in € and Z in Q™ U {oo} as
follows

Y(z) = (S;argdy)(z), z€Q, (3.28)
Z(2) (Scarg Ap) (2), =2€Q™. (3.29)

The interior RH problem (3.24) can be made uniquely solvable for x < 0 by two
methods as in the following two lemmas.

li
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Lemma 3 ([14]). Suppose that & < 0, the point zq satisfies Re[zge Y (0] # 0, ¢,

(j = 0,1,..., || — 1) are given complex numbers and e, is a given real number.
Then the interior RH problem (3.24) with the constraints
Imfzo f IV (O)] = e FP(0) =¢; ( =0,1,.., Is] = 1) (3.30)

is uniquely solvable.

Lemma 4 ([2]). Suppose that k <0, r; are given distinct real numbers in, [0, 27)
and d; are prescribed real numbers, j = 1,2,...,2|x| + 1,. Then the interior RH
problem (3.24) with the side conditions

Im[A(rj) f*(n(r;))] =d; (7=1,2,....,2/K] +1) (3.31)
is uniquely solvable. )

Similarly, the exterior RH problem (3.25) can be made uniquely solvable for
& > 0 as in the following two lemmas.

Lemma 5 ([14]). Suppose that k > 0, the point zy satisfies Re[zoeT2(®)] £ 0, ¢;
(j=1,2,...,6 —1) are given complex numbers and e, is a given real number. Then
the exterior RH problem (3.25) with the constraints

20 r—1 1 i—1 .
Im | 22 =e.. — | o =e; (1=1,2,...6—1) (3.32
m{%i/rn g(n)dn} €rs 27ri/Fn gmdn=-e; (j =1,2,...,k—1) (3.32)

is uniquely solvable.

Lemma 6. Suppose that & > 0, r; are given distinct real numbers in [0,27) and d;
are prescribed real numbers, j = 1,2, ...,26—1. Then the exterior RH problem (3.25)
with the side conditions

Im[A(rj)g™(n(r;))] =d; (G=1,2,..,2 = 1) (3.33)
is uniquely solvable.

Proof.
This lemma can be proved with the same arguments as Lemma 4 in [2, p. 55]. O

3.3. The Integral Equations. For given functions v, € H®, let the function
®(z) be defined by (2.1). Based on the application of the Plemelj’s formula, two
boundary integral equations with the generalized Neumann kernel have been derived
for the interior and the exterior RH problems by Murid and Nasser [8, 6, 7] and
Wegmann et al [14] as in the following two lemmas.

Lemma 7 ({14]). Suppose that v € Null(T — N)* for k > 0 and « is arbitrary
for k < 0. Then the function f(z) := ®(z) is o solution of the interior RH prob-
lem (3.24) with the boundary values

A fH(n(t) = () + iu(t) (3.34)

if and only if 1 is a solution of the integral equation
T —-N)p=—-(M—-K)y. (3.35)
Lemma 8 ([14]). Suppose that v € Null(T + N)* for k < 0 and vy is arbitrary
for k > 0. Then the function g(z) := —®(z) is a solution of the exterior RH

problem (3.25) with the boundary values
A(t)g™ (n(t)) = v(t) + iu(t) (3.36)



Numerical Solution of the Riemann .... 15

-if and only if u is a solution of the integral equation
ZT+N)p=(M-=-K). (3.37)

Another two boundary integral equations with the generalized Neumann ker-
‘nel can be derived for the interior and the exterior RH problems (Sherman [11]
and Gakhov [3, p. 400]). The derivation of these integral equations based on us-
ing a generalization of the double layer potential representation and on using the
Plemelj’s formula.

Let f(2) be a solution of the interior RH problem (3.24), then there exists a real
function A, and for x < 0, there exist complex constants ¢ (k =0,1,...,—k) such
that f(z) can be written as {3, 9]

f2) = — /h & +i6kz (3.38)

21t Jr An— 2z

The constant c¢_, has the form (see [3, p. 299])
¢ = (& +iB) exp(—iZ(0))

where (3 is a real constant depending on A and f, and & is arbitrary real constant.
In [3, p. 299], the arbitrary constant & is chosen such that the constant ¢_, can be
written in the form

c_y =iz (3.39)

where ¢ is a real constant and zp = 1 or zg = i. In this paper, we shall choose &
such that ¢, can be written in the form (3.39) where 2z satisfies the conditions

Re[z0e Y @] £ 0, Re[ze %] £0, |z|=1. (3.40)

If k > 0, the term containing the summation in (3.38) is replaced by zero. Then,
by using the Plemelj’s formula, we can prove the following lemma.

Lemma 9. The function f given by (3.38) is a solution of the interior RH prob-
lem (3.24) if and only if the function h is a solution of the integral equation
(Z+N)h+2> " Recp An*] = 2. (3.41)
k=0
Similarly, if g(z) is a solution of the exterior RH problem (3.25), then g(z) can
be written as [3, 9]
1 [h d "¢
o) = [ R S
2ri Jp An—z Pl
where h is a real function, and for « > 0, ¢ (k =1,2,..., k) are complex constants.
The constant ¢, has the form

¢x = (& +if) exp(=iY (0))

where ﬁ is a real constant depending on A and g, and & is arbitrary real constant.
The constant & will be chosen such that the constant ¢, can be written in the form

(3.42)

¢, =iczgy
where ¢ is a real constant and zp satisfies the conditions (3.40). If x <0, the term

containing the summation in (3.42) is replaced by zero. Then using the Plemelj’s
formula, we can prove the following lemma.
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Lemma 10. The function g defined by (3.42) is a solution of the exterior RH
problem (3.25) if and only if the function h is a solution of the integral equation

(Z-N)h+2 i Relci An %] = 2. (3.43)
k=1

4. SoLviNG THE INTERIOR RH PROBLEM

In this section, we shall use the integral equations (3.35) and (3.41) to give the
solutions for the interior RH problem (3.24). We shall assume the RH problems are
uniquely solvable, i.e., we shall assume the right-hand side -y satisfies the condition
(3.26) for k > 0 and the solutions of the RH problems satisfy the constraints (3.30)
or (3.31) for k < 0.

4.1. The Interior Rh Problem (3.24) with the Condition (3.26). For the
interior RH problem (3.24) with the condition (3.26), we have £ > 0 and v € (Z —
N)*. Hence, Theorem 2 implies that dim Null(Z —~A) = 0 and dim Null(Z+N) =
2&—1 > 0. Thus, by the Fredholm alternative theorem, the integral equation (3.35)
is uniquely solvable. Moreover, the integral equation (3.41) becomes

(T+N)h=2y. (4.44)

Since N* = —N and v € Null(Z — N)*, then the Fredholm alternative theorem
implies that the integral equation (4.44) is solvable. However, it is non-uniquely
solvable.

Since, it is not easy to solve numerically the non-uniquely solvable integral equa-
tions. Hence, in this paper, we shall use only the uniquely solvable integral equation
(3.35) to solve the interior RH problem (3.24) with the condition (3.26).

Let y be the unique solution of the integral equation (3.35) and let ®(z) be
defined by (2.1), then by Lemma 7, the unique solution of the interior RH prob-
lem (3.24) with the condition (3.26) is given by f(z) := ®(z). The boundary values
of the function f(z) are given by (3.34).

4.2. The Interior RH Problem (3.24) with the Constraints (3.30). For
this case, we have k < 0. Let f(z) be the unique solution of the interior RH
problem (3.24) with the constraints (3.30), then f(z) can be written as

|r|—1

)= Y 97+ (), zeQ ()

§=0
where fo(2) is the unique solution of the interior RH problem

Re[4o(s)fy (1(s))] = 10(s), (4.46)
subject to the constraint
Im[z fo(0)] =lo (4.47)

with lo := e).|/|5[! and vo(s) := v(s) — Re [A(s) Zlle(;l ejn(s)j/j!].

We shall present two methods for solving the the interior RH problem (4.46) with
zero index. The first method is based on an integral equation obtained by modifying
the integral equation (3.35). In the second method, we develop a new method based
on an integral equation obtained by modifying the integral equation (3.41).
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4.2.1. The Method 1. Since rg = ind(Ag) = 0, then Lemma 7 implies that the
function

_ 1 [r+iu dy

folz) = o~ Ry - (4.48)

is a solution of the interior RH problem (4.46) with boundary values
Ao(8)fo (n()) = v0(s) +iu(s) (4.49)

if and only if p is a solution of the integral equation
p—Nop = —(Mo — K)o (4.50)
By the definitions of a and b, we have
1 [ yo+ipdy / o : .
0)=— — = : :

70 = 57 [ 22 = [ 00le) +iu)ale) +be)ds. (@)

Since the function fy(2) satisfies the constraint (4.47), then (4.51) and (4.47) imply
that u(s) satisfles

Pu= Qv+l (4.52)
where the integral operators P and Q are as in (2.21) and (2.22). By-adding (4.52)
to (4.50), we obtain the following integral equation for the determination of y,

(z —No + Pl = —(Mo — Q —K)yo +lo- (4.53)

Lemma 11. Suppose that k < 0 and zq satisfies Re[zge ™Y (0] #£ 0, then the integral
equation (4.53) is uniquely solvable.

Proof.
Suppose that u € Null(Z — Ny +P), i.e.,
27

pls) = [ Nols, Ou(e)d + /O " P()u(t)dt = 0. (4.54)

Since ko = ind(Ag) = 0, then by the Fredholm alternative theorem and by Theo-
rem 2, dim Null(Z — Ng) = dim Null(Z — M) = 1. Let ¢ € Null(Z — N§). By
Theorem 7 in [14], we can assume ¢ to be a strictly positive function. Multiplying
both sides of (4.54) by ¢(s) then integrating with respect to s, we obtain

/o " P(t)u(t)dt ; " d(s)ds = 0.

Since ¢(s) is a positive real function, we obtain Pu = 0; Hence (4.54) implies that
w € Null(Z — Np). Let F(z) := ®(z) where ®(2) be formed with v = 0 and p by
(2.1), then Lemma 7 implies that the function F'(2) is a solution of the homogeneous
interior RH problem
Re[Ao(s)F* (n(s))] = 0,

with Ag(s)Ft(n(s)) = iu(s). By the definition of the functions a and b, we have
F(0) = fo27r ipe(s)(a(8) +1b(s))ds which implies in view of Py = 0 that Im[20F(0)] =
0. Since Re[zge~ Y] £ 0, it follows from Lemma 3 that F(z) = 0 for all z € Q.
Hence, 1 = 0, which implies in view of the Fredholm alternative theorem that the
integral equation (4.53) is uniquely solvable. ' [l

Consequently, by the solving the uniquely solvable integral equation (4.53) for
11, the unique solution of the interior RH problem (3.24) with the constraints (3.30)
is given by (4.45) where fy is given by (4.48). The boundary values of the function
f(2) can be calculated from (4.49) and (4.45).
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4.2.2. The Method 2. Since ko = ind(Ap) = 0, then Lemma 9 implies that the
solution fo(z) of the interior RH problem (4.46) withe the constraint (4.47) is given
by

fole) = 5 /F Aiond_nz ticzm (4.55)
where ¢ is a real constant, zy satisfies the conditions (3.40), and h is a solution of
the integral equation

(T + N)h — 2cIm[z5A0] = 270. (456
By the Cauchy integral formula and by the definition of the functions a¢ and b,
we have :

fo(0) = /0 wh(t)(a(t)—l—ib(t))dt—i—ic%.

Since fo(z) satisfies the constraint (4.47) and [z¢| = 1, the constant c is given by

c=lg+ Qh. (4.57)
By substituting (4.57) into (4.56), we obtain
(T +N2)h = 2lgIm[Z5Ag] + 270, (4.58)
where N, is the integral operator with the kernel
Na(s,1) := No(s,t) — 2Q(¢)Im[z5Ao(s)]. (4.59)

Lemma 12. Suppose that & < 0 and zg satisfies the conditions (3.40), then the
integral equation (4.58) is uniquely solvable.

Proof.
Let h € Null(Z — N3), i.e.,

2
W)+ [ (Nols, ) — 2Q(0mlz Ao () h(t)de = 0, (4:60)
0
and let the function F(z), z ¢ T, be defined by
1 h dn a :
:: —_— —_— 1Zo t h 0 .
F(z) ot ) A= 2 +izg ; Qt)h(t)dt (4.61)

Then by mean of the Plemelj’s formula, (4.60) implies that F(z) is a solution of
the homogeneous interior RH problem
Re[Ao(s)F* (n(s))] = 0. (4.62)
By the definition of the functions P and @, we have

2 F(0) = /0 i P(s)h(s)ds ' (4.63)

which implies that F(2) satisfies the constraint Im[zqF'(0)] = 0.
Since kg = 0, Lemma 3 implies that F(z) = 0 for all z € Q. Consequently, we
have

1 [ h dy 2
= —i% Q .
ot | Agn — 2 iz ; (t)h(t)dt, ze€Q, (4.64)

which implies that F'(z) is analytic in Q~ with Ag(s)F~(n(s)) = —h(s) and
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27
F(o0) = izg Q(t)h(t)dt. (4.65)
0
Let G(z) := —iF(z)/z, then G is analytic in Q= with A,(s)G™(n(s)) = ih(s)
and satisfies the homogeneous exterior RH problem

Re[A1(s)G (n(s))]

=0. (4.66)
By the definition of the function G and by (4.65), we have

! - _ LY (FE@, . [ ‘
%/FG (n)dn——lﬁ/erT]——lF(oo)—zo i Q(t)h(t)dt, (4.67)

which implies that the function G satisfies

Im [2055; Jr G~ (n)dn] = 0.

Since Re[zpe™1%(>)] # 0, then by Lemma 5, G(z) = 0 for all z € Q~. Hence h =
0. Then the Fredholm alternative theorem implies that the integral equation (4.58)
is uniquely solvable. O

Let 1 be the unique solution of the uniquely solvable integral equation (4.58) and
let fy be given by (4.55), then the unique solution of the interior RH problem (3.24)
with the constraints (3.30) is given by (4.45).

In the above two methods, the values of the unique solution f of the interior RH
problem (3.24) with the constraints (3.30) at any point z € 2 can be calculated us-
ing the Cauchy integral formula. However, on the one hand, the method 1 provides
us with the boundary values f* of the unique solution f without any extra calcu-
lations as we need for the method 2. This is an advantage of the method 1 over the
method 2. On the other hand, the right-hand side of the integral equation (4.58)
is given explicitly and the right-hand side of the integral equation (4.53) requires
extra calculations which is an advantage of the method 2 over the method 1. This
remark is true of the methods 1 and 2 which will be given in the next section of
the exterior RH problem (3.25) with the constraints (3.32).

4.3. The Interior RH Problem (3.24) with the Side Conditions (3.31). Let
k < 0 and let f(z) be the unique solution of the interior RH problem (3.24) with the
side conditions (3.31) and let & be a solution of the integral equation (3.35), then
Lemma 7 implies that f(z) = ®(z) where ®(z) is defied by (2.1). Furthermore, the
boundary values of f(z) are given by (3.34).

From (3.34), the side conditions (3.31) on the solution f(z) of the interior RH
problem (3.24) require the solution of the integral equation (3.35) to satisfy the
constraints

p(ri) =d;, i=1,2,...,2/|+1. (4.68)
Substituting (4.68) into (3.35) implies that
(Rajw)+11)(t) = €2ym|+15 (4.69)

whefe Colkl+1 is the 2|/£| + 1 x 1 vector with the elements
(Capei+1)i = ds + (M) (i) = (Ky)(r:), i=1,2,..., 2/ + 1.

Consequently; the function p satisfies the system of integral equations

( 7;2|_~ % )” = ( _(f\i'"'f,lch ) : (4.70)
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Lemma 13. The system of integral equations (4.70) is uniquely solvable.

Proof.
Since the interior RH problem (3.24) with the side conditions (3.31) is uniquely
solvable, then the system of integral equations (4.70) is solvable. Thus to show
that (4.70) is uniquely solvable, it is sufficient to show that the homogenous system

R
( szlel ) po =0 , (4.71)

has only the trivial solution gy = 0. Let up by any solution of the homogenous
system (4.71), then pg = 0 satisfies
po~Npo =0 and Ryjq1p0 = 0.

Hence pg(r;) = (NMpo)(ri) =0for i =1,2,...,2|x| + 1. Let fg(2) := ®(z) where ®
formed with v = 0 and pg as in (2.1), then Lemma 7 implies that fy is a solution
of the homogenous interior RH problem

Re[A(s) fo(n(s))] = 0 (4.72)

with A(t) fo(n(t)) = ipo(f). Since po(ry) = 0, hence
Im[A(r;) fo(n(r:))] = po(r;) =0, i=1,2,...,2|x| + 1. (4.73)
Then by Lemma 5, the homogenous interior RH problem (4.72) with the side con-
ditions (4.73) has the unique solution fy = 0 which implies that pg = 0. O

Let 1 be the unique solution of the system of integral equations (4.70) and let
®(2) be defined by (2.1), then the unique solution of the interior RH problem (3.24)
with the side conditions (3.31) is given by f(z) := ®(z). The boundary values of
the function f(z) are given by (3.34).

5. SOLVING THE EXTERIOR RH PROBLEMS

In this section, we shall give formulas for the solutions of the exterior RH prob-
lem (3.25) in terms of the solution of the integral equations (3.37) and (3.43). We
shall assume the right-hand side + satisfies the condition (3.27) for k < 0 and the
solutions of the exterior RH problem satisfy the constraints (3.32) or (3.33) for
K > 0 so the problem is always uniquely solvable. '

5.1. The Exterior RH Problem (3.24) with the Condition (3.26). Since
k <0 and v € Null(Z + N)1, then Theorem 2 implies that dim Null(Z + N) =0
and dim Null(Z — N') = 2|k| + 1 > 0. Hence, the integral equation (3.43) becomes

(T — N)h =2y. (5.74)

Since N* = —N and v € Null(T + N')L, then the Fredholm alternative theorem
implies that the integral equation (5.74) is non-uniquely solvable.

However, by the Fredholm alternative theorem, the integral equation (3.37) is
uniquely solvable. Hence, we shall use only the uniquely solvable integral equation
(3.37) to solve the exterior RH problem (3.25) with the condition (3.27).

By Lemma 8, the unique solution of the exterior RH problem (3.25) with the
condition (3.27) is given by g(z) := —®(z) where ®(z) is defined by (2.1) with p
being the unique solution of the integral equation (3.37). The boundary values of
the function g(z) are given by (3.36).
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5.2. The Exterior RH Problem (3.25) with the Constraints (3.32). Let
% > 0 and let g(z) be the unique solution of the exterior RH problem (3.25) with
the constraints (3.32). Then g(z) can be written as

r—1

a2 =94 0@ g, (5.75)

23 g1’

=1 _
where g1(z) is the unique solution of the exterior RH problem
Re[A1(s)g; (n(s))] = v1(s) ' (5.76)

subject to the constraint
20
Im | — dnl = .
m [Qﬂi/rgl(n) n} h (5.77)

with I3 := e, and y1(s) :=v(s) — Re [A(s) E;:ll ej/n(s)j].

As for the interior RH problem, we shall present two methods for solving the
the exterior RH problem (5.76) with the constraint (5.77). The first method is
based on a uniquely solvable integral equation obtained by modifying the integral
equation (3.37). In the second method, we modify the integral equation (3.43) to
obtain a new uniquely solvable integral equation.

5.2.1. The Method 1. Since xk; = ind(A;) = 1, then Lemma 8 implies that the

function .
1 [m+ip dy

= —_-— 7
v 9.(2) 2mi Jp A1 n—=z (5.78)
is a solution of the exterior RH problem (5.76) with boundary values
A1(s)gr (n(s)) = n(s) + iu(s) (5.79)
if and only if u is a solution of the integral equation
(Z+MNM)p= M- K)m. (5.80)

By the definition of ¢ and b, we have

o Lo i = [ 25— [ (o) o) ale) + b5

2mi T
Since the function g;(z) satisfies the constrain (5.77), then (5.77) implies that p(s)
satisfies

v Pu= Qv +1. (5.81)
By adding (5.81) to (5.80), we obtain the following integral equation for the deter-
mination of y,

TH+M+Pp=M+Q—K)m+1. (5.82)
The following lemma can be proved along the same lines as Lemma 11.

- Lemma 14. Suppose that £ > 0 and zo satisfies Re[zoeZ2()] # 0, then the
integral equation (5.82) is uniquely solvable.

By the solving the uniquely solvable integral equation (5.82) for p, the unique
solution of the exterior RH problem (3.25) with the constraints (3.32) can be calcu-
lated from (5.75) where g; is given by (5.78). The boundary values of the function
g(2) can be calculated from (5.79) and (5.75).
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5.2.2. The Method 2. By Lemma 10 and since x; = ind(A;) = 1, the solution of
the exterior RH problem (5.76) with the constraint (5.77) is given by

1 h dn iczg
gl(Z)-—%/r‘—A—ITI—Z_‘_—Z_j (5.83)

where ¢ is a real constant, zo satisfies the conditions (3.40) and A is a solution of
the integral equation

(I — N1)h — 2cIm[zg4g] = 2. (5.84)

The function g; can be written in the form
1 1 h d m . o

g1(2) = - <_2—7T1/1" e _nz + 5 (a(s) +ib(s))h(s)ds +1cz0) . (5.85)

Hence '
1 2m
— | gr(mydn = / (a(s) + ib(s))h(s)ds + ic. (5.86)
2771 T 0

Since gy satisfies the constraint (5.77) and |zo] = 1, then (5.86) implies that the
constant ¢ is given by

c=1; + Qh. (5.87)
By substituting (5.87) into (5.84), we obtain
(Z — N3)h = 201 Im[Z5 Aol + 271, (5.88)
where N3 is the integral operator with the kernel
Ni(s,t) = Nq(s,t) +2Q(t)Im[zgAo(s)]. (5.89)

Lemma 15. Suppose that k > 0 and 2y satisfies the conditions (3.40), then the
“integrol equation (5.88) is uniquely solvable.

Proof.
Let A be a solution of the homogenous equation
2m
) = [ (Mol + 2Q(0) iz Aa(9)) hit)d =0, (5.90)
0
and let the function G(z), z ¢ ', be defined by
1 h dn iz [*7
6= 5 | g -2 /0 Q()h(1)dt. (5.91)
Then it follows from the jump relation (2.3) that
_ h(s) izg [
Gt (n(s)) — G (n(s)) = -—/ Q(t)h(t)dt. 5.92
(0(e)) = G~ (ale) = oo~ =% [ @Ueyay (59

By mean of the Plemelj’s formula, (5.90) implies that the function G is a solution
of the homogeneous exterior RH problem

Re[4:1(s)G™ (n(s))] = 0. (5.93)
By the definition of the function a and b, we have

20

o FG-(n)dnz - /0 a(s)h(s)ds, (5.94)
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which implies that G satisfies the constraint Im [z055; Jp G~ (n)dn] = 0. Since
k1 = 1, Lemma 5 implies that G(z) = 0 on ~. Hence, G~ () = 0 on T, which
implies in view of (5.92) that the function G(z) is analytic in { with

— 27
G (n(s)) = ;’{% -5 / Q(t)h(t)dr. (5.95)
Hence the function
27
F(2) =12G(z) —7 | Q(t)h(t)dt, (5.96)

o
is a solution of the homogeneous interior RH problem
Re[Ao(s)F* (n(s))] =0, (5.97)

with the condition Im[29F'(0)] = 0. Since ko = 0, it follows from Lemma 3 that
F(2) =0 for all z € Q. Consequently,

2m
Gz) = 2 / Q(t)h(t)dt. (5.98)
0
Since G(z) is analytic in €, it follows from (5.98) that f027r Q(t)h(t)dt = 0 which
implies that G(z) = 0 on Q. In view of (5.95), we obtain u = 0. Hence, by the
Fredholm alternative theorem, the integral equation (5.88) is uniquely solvable. O
Let u be the solution of the uniquely solvable integral equation (5.88), then
unique solution of the exterior RH problem (3.25) with the constraints (3.32) can
be calculated from (5.75) where g; is given by (5.83).

5.3. The Exterior RH Problem (3.25) with the Side Conditions (3.33).
Let k < 0 and let g(2) be the unique solution of the exterior RH problem (3.25) with
the side conditions (3.33), then Lemma 8 implies that g(z) = —®(z) where ®(z)
defied by (2.1) with p is a solution of the integral equation (3.37). Furthermore,
the boundary values of g(z) are given by (3.36). ‘

By (3.36), the side conditions (3.33) on the solution g(z) of the exterior RH
problem (3.25) require the solution u(t) of the integral equation (3.37) to satisfy
the constraints

wr))=d;, i=1,2,...,2k—1. (5.99)
Substituting (5.99) into (3.37) implies that
(Rar-—1p)(t) = d2w-1, (5.100)

where dg,_1 is the 2k — 1 X 1 vector with the elements
(-d2n—1)i = —di + (M’Y)(Tz) - (K:"}/)(’f'l), = ]-a 27 B 52"‘: - L

Consequently, the function p satisfies the system of integral equations

Rz,.;_l _ dzn—l
(I+N>”_<(M—IC)7 . (5.101)
Lemma 16. The the system of integral equations (5.101) is uniquely solvable.
Proof.
This lemma can be proved with the same arguments as Lemma 13. ]

By solving the uniquely solvable system of integral equations (5.101) for p, the
unique solution of the exterior RH problem (3.25) with the side conditions (3.33)
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is given by g(z) := —®(z) where ®(z) is defined by (2.1). The boundary values of
the function g(z) are given by (3.36).

6. THE NUMERICAL IMPLEMENTATIONS

Since the integrals in the integral equations of this paper are over 27 —periodic
functions, they can be best discretized on an equidistant grid by the trapezoidal rule,
i.e., the integral equations are solved by the Nystrom method with the trapezoidal
rule as the quadrature rule (Atkinson [1]).

Suppose that n is an even integer and define the the n equidistant collocation
points ¢; by

2
t; = (j—l)%, j=1,2,...,n (6.102)

For a 2w —periodic function h, then the trapezoidal rule approximate the integral
I(R) := [7 h(t)dt by

In(h) = 2% Zh(t (6.103)

Then the trapezoidal rule (6.103) with the grld (6.102) will be used to discretize the
integrals in the integral equations (3.35) for x > 0, (4.53), (4.58), (3.37) for x < 0,
(5.82), (5.88) and the system of integral equations (4.70) for £ < 0 and (5.101) for
Kk > 0.

The discretization operator N, of the operator AV is given by

(Nnh)(s) : ZN(S t)h(t;). (6.104)

Then we define the matrix IN to be the n x n matrix with the elements
2 - ..
Nz'j = FN(thtj)’ 1,7 = 1,2,...”. (6105)

The discretization of the operators Ny, N1, N2, N3, M, Mg and M; is defined
as in (6.104) and will be denoted by Ny n, N1 n, Non, N3 n, Mp, Mo, and My ,,
respectively. Similarly, we define the matrices Ng, N1, N2, N3, M, Mg and M;
as in (6.105) with N replaced by Ng, N1, Na, N3, M, My and M, respectively.

The discretization operator P,, of the operator P is defined by

(Quh)(s) = 2 ZQ(t (). (6.106)

The discretization operator Q,, of the operator @ is defined as in (6.106). Then we
define the matrices P and Q to be the n x n matrices with the elements

2w 2 ..
P, = —n—P(tj), Q;; = ?Q(tj), i,j=1,2,...n. (6.107)

For k < 0, we define the (2|x]+ 1) X n matrix Ry and the (2|x| 4+ 1) x 1 vector €
fori=1,2,...2|x|+1and j=1,2,...,n by

Rug = 2o ), & = dik (M) () = (o))
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where 7; and d; are as in Lemma, 4. Simjlarly7 for k > 0, we define the (2k —1) x n
matrix R and the (2k — 1) x 1 vector d by

Ragy o= o N(rity), i = —di+ (My)(r) = (K)(r)

where 7; and d; are as in Lemma 6,¢=1,2,...2k—1land j=1,2,...,n
We denote by u, to the approximate solution of the integral equations (3.35)
for x > 0, (4.53), (4.58), (3.37) for k <0, (5.82), (5.88) and the system of integral
equations (4.70) for x < 0 and (5.101) for x > 0. Then we define the n x 1 vector
x by
x; = pa(t), 1=1,2,...,n

We define also the n x 1 vectors y, yo and y; by

vii=7), Yoi:=%) Yii=mt), ¥Y2.:=Im[ZAhc(t;)].

Let K, be the discretization of the operator K, then we can calculate (K, h)(t
efficiently for all ¢t € [0,2n] using the FFT. For the collocation points t; (¢ =
1,2,...,n), if y3 is the n x 1 vector with the elements

Y3, = (’Cnh)(tz)a
then
y3 =Kx
where the matrix K is known as the Wittich’s matrix and is given for ¢,5 =
1,2,...,n by
K., — 0, if j —4is even
T Zeot AT if j—i s odd.
Let I be the n X n identity matrix and let I; be the n x 1 vector whose elements
are all ones. Hence, the applying of the Nystrém method to the uniquely solvable

integral equations (3.35) for k > 0, (4.53), (4.58), (3.37) for k < 0, (5.82) and (5.88)
leads, respectively, to the following linear systems ’

I-N)x = —(M-K)y, (6.108)
I-No+P)x = —(Mo—Q—K)yo+loli, (6.109)
(I+N2)x = 2lgys + 2yo, (6.110)
I+N)x = (M-K)y, (6.111)
I+N;1+P)x = M;+Q~-K)y; + 1114, (6.112)
(I-N3)x = 2y, +2y;1. (6.113)

Since the integral equations are uniquely solvable, then the resulting linear sys-
tem (6.108)—(6.113) are uniquely solvable for sufficiently large n [1, p. 107].

By using the trapezoidal rule (6.103) to discretize the integrals in the system of
integral equations (4.70) for k < 0 and (5.101) for & > 0 then collocating at the
node points (6.102), we obtain, respectively, the following over-determined linear

system
( Ille >x = ( _(Mé_K)y ) (6.114)

( II:QN >x = ( M _aK)y > (6.115)
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FIGURE 1. The CurveI.

The above linear systems (6.108)—(6.115) are either uniquely solvable square
linear systems or over-determined linear systems. In our numerical calculations,
both type of linear systems are solved using the MATLAB’s \ operator that makes
use of the Gauss elimination method for square systems and the QR factorization
with column pivoting method for over-determined systems [12].

By solving the linear systems, we obtain the solutions of the integral equations
at the collocation points ¢;, i = 1,2,...,n. Then the Nystrom interpolating formula
provides us with approximate solutions u,(t) to the integral equations for all ¢ €
[0,27]. The approximate solutions p,(¢) of these integral equations can be then
used to obtain approximate solutions to the RH problems.

7. NUMERICAL EXAMPLES

In this section we apply the proposed method to six examples contain three inte-
rior RH problems (Examples 1-3) and three exterior RH problems (Examples 4-6)
in the interior and the exterior of the smooth Jordan curve I' with the parameter-
ization 7(s) = (3 + cos3s +sin5s)e®, 0 < s < 2r. The graphs of [ is shown in
Figure 1. ,

Tables 1-8 show the values of the approximate solutions of the RH problems at
the test points z; = —1 —1i and 2z, = 1 — 1 for the interior problems and at the test
points 23 = —3 —1 and 24 = 3 — i for the exterior problems.

Tables 1, 2, 46 and 8 list also the sup-norm error ||f* — f|e and ||g7 —
9 lleo where ft, gt are the boundary values of the exact solutions and f,F, g;
are the boundary values of the approximate solutions. The sup-norm is computed
numerically by comparing f*(n(t)), g% (n(t)) and £ (n(t)), ¢;f (n(t)) at 100 equally
spaced points in [0, 27|, most of which are not collocation points.

The exact solution of the RH problem in Example 1 is f(z) = z and the exact
solution of the RH problem in Example 4 is g(z) = 1/z. The exact solutions of the
RH problems in the remaining examples are not known. For this case, we consider
the approximate solution obtained with n = 1024 as the exact solution.
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TABLE 1. The numerical results for Example 17.

n

If = falleo

f(z1)

f(z2)

32
64
128
256
512

2.67(—01)
3.95(—02)
1.13(—03)
4.92(—07)
4.14(—11)

—1.030373 — 1.0013401
—1.002061 — 0.998145i
—0.999988 — 1.0000001
—1.000000 — 1.0000001
—1.000000 — 1.0000001

'1.001033 — 0.966912i

0.999868 — 0.9968861
1.000008 — 1.000012i
1.000000 — 1.000000i
1.000000 — 1.000000i

TABLE 2. The numerical results for Example 18 using method 1.

n Mf — falloo f(z1) f(22)

32 1.64(—01) 0.121506 + 0.3885271 —0.082456 — 0.0446721
64 2.92(—02) 0.139595 + 0.4052961 —0.069501 — 0.0567231
128 5.88(—04) 0.139656 + 0.4051101  —0.068900 — 0.0581021
256 1.88(—07) 0:139653 + 0.4051151 —0.068910 — 0.0580771
512 8.81(—12) 0.139653 + 0.4051151 —0.068910 — 0.0580771

TABLE 3. The numerical results for Example 18 using method 2.

n

f(z1)

- f(z2)

32 0.116989 + 0.2897771
64 0.142597 4 0.405528i
128 0.139671 + 0.4050971
256 0.139653 4 0.4051151
512 0.139653 + 0.4051151

—0.125253 4 0.0134951
—0.068479 — 0.058130i
—0.068861 — 0.0581951
—0.068910 — 0.058077i
—0.068910 — 0.0580771

TABLE 4. The numerical results for Example 19.

n

1f = falloo

f(z1)

f(22)

32
64
128
256
512

2.44(—01)
4.15(—02)
6.31(—04)
3.15(—07)
1.99(—11)

0.049024 — 0.6495211
0.077166 — 0.672586i
0.086361 — 0.6797751
0.086348 — 0.679774i
0.086348 — 0.6797741

—0.608792 — 0.4038351
—0.564633 — 0.384698i
—0.555738 — 0.381776i
—0.555758 — 0.381788i
—0.555758 — 0.38178381

Example 17. A(s)
Example 18. A(s) =e'*
s)

€
Example 19. A( e (k=-1),rn=0,ro=7/2,r3=7,d =dy =d3 =0

and y(s) = cos2s.

Example 20. A(s) = R(s)e™® (k= —1) and v(s) = cos2s.

e*/R(s) (k =1) and ~(s) = cos 2s.

(k=-1),e0=e1 =0, zg =1 and y(s) = cos2s.

Example 21. A(s) =¢* (k=1), e =0, zo = 1 and y(s) = cos 2s.

Example 22. A(s) =€ (k=1), 71 =0, d; =0 and y(s) = cos2s."
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TABLE 5. The numerical results for Example 20.

n 9 — 9nlloo g(z3) 9(24)
32 —0.356640 & 0.1231821 0.347841 + 0.1866171

64 2.97(-02) —0.301208 + 0.099487i 0.301949 + 0.1036851
128 . 8.74(—04) —0.299973 + 0.099983i 0.299980 + 0.0999601
256 1.71(-07) —0.300000 + 0.100000i  0.300000 +- 0.100000i
512 3.66(—12) —0.300000 + 0.100000i  0.300000 + 0.100000i

TABLE 6. The numerical results for Example 21 using method 1.

n 19— 9nllo ' g(23) g(24)
33 —0.113352 & 0.5509661  0.465106 + 1.4802491
64 2.85(~01)  —0.252018 + 0.533466i 0.259034 + 1.379282i
128 1.16(—02)  —0.251439 + 0.535743i 0.264041 + 1.372368i
256  4.21(~06)  —0.251351 + 0.535805i 0.264285 + 1.372376i
512 3.49(~11)  —0.251351 + 0.535805i 0.264285 + 1.372376i

TABLE 7. The numerical results for Example 21 using method 2.

n 9(z3) 9(z1)

32 —0.179432 + 0.5448651 0.633549 + 1.580277i
64 —0.248657 + 0.5385461 0.286340 + 1.396616i
128 —0.251359 + 0.5358161 0.264296 + 1.372618i
256 —0.251351 + 0.5358051 0.264285 + 1.372376i
512 —0.251351 + 0.535805i 0.264285 + 1.372376i

TABLE 8. The numerical results for Example 22.

n lg — gnlloo 9(23) 9(24)

32 —0.447336 — 0.0756251 0.103461 + 1.8310001
64 3.42(~01)  —0.034616 + 1.192131i 0.482947 + 0.717498i
128 1.20(=02)  —0.030617 + 1.198096i 0.484756 + 0.710105i
256  4.58(—06)  —0.030675+ 1.197833i 0.484962 + 0.710348i
512 © 7.02(=11)-  —0.030675 + 1.197833i 0.484961 + 0.710348i

8. CONCLUSIONS

We developed a numerical method for solving numerically the interior and the
exterior RH problems. The method is based on the boundary integral equations
with the generalized Neumann kernel that have been derived in [11, 8, 6, 7, 14].

The uniquely solvable RH problems were solved using only the integral equations
derived in (8, 6, 7, 14] because they are uniquely solvable and the integral equations
derived in [11] are non-uniquely solvable.

The non-uniquely solvable RH problems with additional constraints (at z = 0 or
at z = 00) were solved using two methods, the method 1 based on the boundary
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integral equation of 7, 14] and the method 2 based on the boundary integral equa-
tion of [11]. For the two methods, the solutions of the RH problems were calculated
using the Cauchy integral formula. The advantage of method 1 is that it provides
us with the boundary values of the solutions of the RH problems without any ex-
tra calculations as we need for the method 2. However, the right-hand side of the
integral equation of [11] is given explicitly and the right-hand side of the integral
equation of [7, 14] requires extra calculations which is an advantage of method 2
over method 1. :

Several RH problems were solved using the developed method. The numerical
examples show clearly that the developed method gives results of high accuracy.
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1. INTRODUCTION

Generally to prove fixed or common fixed point theorems for maps satisfying
strictly contractive conditions, one has to assume the continuity of maps and com-
pact metric spaces. In spherically complete ultra metric spaces, the continuity of
maps are not necessary to obtain fixed points. First we state some known defini- .
tions.

Definition 1. ([3]): Let (X,d) be a metric space. If the metric d satisfies strong
triangle inequality:

d(z,y) < maz{d(z,2),d(z,y)}Vz,y,z € X

then d is called an ultra metric on X and the pair (X,d) is called an ultra metric
space.

Definition 2. ([3]): An ultra metric space (X, d) is said to be spherically complete
if every shrinking collection of balls in X has a non empty intersection.

Recently Gajic [1] proved the following

Theorem 3. (Theorem 1, [1]): Let (X,d) be a spherically complete ulira metric
space. If T : X — X is a mapping such that

d(Tz,Ty) < maz{d(z,y),d(z,Tz),d(y, Ty)}Ve,y € X,z # y

then T has a unique fized point in X .

Now we extend this Theorem for a pair of maps of Jungck type.
31
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‘ 2. MAIN RESULTS

Theorem 4. Let (X, d) be a spherically complete ultra metric space. If f and T
are self maps on X satisfying

T(X) € f(X), (2.1)

d(Tz,Ty) < maz{d(fz, fy),d(fz,Tx),d(fy, Ty)}Ve,y € X,x #y ~ (2.2)

then there exists z € X such thatfz =Txz.
Further if f and T are coincidentally commuting at z then z is the unique common
fized point of f and T

Proof. Let B, = (fa;d(fa,Ta)) denote the closed sphere centered at fa with the
radius d(fa, Ta) and let A be the collection of these spheres for all € X. Then the
relation B, < By iff By C B, is a partial order on A. Let A; be a totally ordered

sub family of A. Since (X, d) is spherically complete , we have ()| B, = B # ¢.
BacA
Let fb € B and B, € Ay. Then fb € B, . Hence '
d(fb, fa) < d(fa,Ta)------ (i)
If a = b then B, = By. Assume that a # b.
Let £ € By. Then
d(z, fb) < d(fb,Tb)
< max{d(fb, fa),d(fa, Ta),d(Ta, Th)}
= max{d(fa,Ta),d(Ta,TH)} from(i)
< max{d(fa, b), d(fa, Ta),d(fb, TH)}  from(2.2)
=d(fa,Ta)........ (1)

Now , d(z, fa) < max{d(z, fb),d(fb, fa)} < d(fa,Ta) from(i) and (ii)
Thus x € B,. Hence By C B, for any B, € A;. Thus B, is an upper bound
in A for the family A; and hence by Zorn’s Lemma, A has a maximal element,say
B,,zeX.- '
Suppose fz # Tz. Since. Tz € T(X) C f(X), there exists w € Xsuch that
Tz = fw. Clearly z # w. Now from (2.2) we have
d(fw,Tw) = d(Tz, Tw)

<max{d(fz, fw),d(fz,Tz),d(fw, Tw)} from(2.2)

= d(fz, fw)
Thus fz ¢ B,. Hence B, € B,,. It is a contradiction to the maximality of B,.
Hence fz =T=z.
Further assume that f and T are coincidentally commuting at z .
Then f22 = f(f2)= fTz=Tfz2=T(Tz) = T?=2.
Suppose fz # z . Now from (2.2), we have

d(Tf2,Tz) < max{d(f22, £2),d(f22, Tf2),d(fTz)}
=d(Tfz,Tz).

Hence fz =z . Thus z = fz = T2. Uniqueness of common fixed point of f and T
follows easily from(2.2). O

Now we give an example to illustrate our Theorem 4.



Common Fixed Point Theorems In Ultra .... 33

Example 5. . Let X = R,

_J0if z=y
DefineT,f: X — X asTzx =1 and fz = %r—l, Vz e X.
All conditions of Theorem 4 are satisfied. Clearly 1 is the unique common fized
point of T and f.
Corollary 6. Theorem 4 holds if the inequality (2.2) is replaced by

d(Tz,Ty) < maz{d(fz, fy),d(fz,Tx),d(fy, Ty),d(fz,Ty),d(fy, Tz)}
Ve,ye X,z #vy (2.3)

Proof. Since d(fz,Ty) < maz{d(fz, fy),d(fy,Ty)} and
d(fy, Tz) < maz{d(fy, fz),d(fz,Tx)} it follows that (2.3) implies that (2.2). O

Corollary 7. Taking f = I(Identity map) in Theorem 4 , we obtain Theorem 1 of
1.
Now we generalize Theorem 4 when T is a multi-valued map. Let C(X) denote
the class of all non empty compact subsets of X. For A, B € C(X), the Hausdorff
metric is defined as

H(A,B) = max{ ;uep;(w:B), Zuepéi(y,A) }
where d(z, A) = inf{d(z,a) : a € A}.
Definition 8. Let (X, d) be an ultra metric space, f : X — X and T : X —

C(X). f and T are said to be coincidentally commuting at z G Xif f2 € Tz
implies fT2z CTfz.

Theorem 9. Let (X, d) be a spherically complete ultra metric space. Let f X —
X and T : X — C(X) be satisfying

Tz C f(X), Vz € X, (2.4)
H(Tz,Ty) < maz{d(fz, fy),d(fz,Tz),d(fy, Ty)}Vz,y € X,z #y.  (2.5)

Then there exists z € X such that fz € Tz.
Further assume that

d{fz, fu) < H(Tfy,Tu)Vz,y,u € Xwithfz € Ty (2.6)
and
fand T are coincidentally commuting atz. (2.7)

Then fz is the unique common fixed point of f and T'.

Proof. Let B, = (fa;d(fa,Ta)) denote the closed sphere centered at fa with the
radius d(fa,Ta) and let A be the collection of these spheres for all a € X. Then the
relation B, < By iff By C B, is a partial order on A. Let A; be a totally ordered
sub family of A. Since (X, d) is spherically complete , we have ()| B, = B # ¢.

B,€A;
Let fb € B and B, € A;. Then fb € B,.
Hence d(fb, fa) < d(fa,Ta)--- (i)
If a = b then B, = By. Assume that a # b.
Let « € By. Then d(z, fb) < d(fb, Tb).
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Since Ta is compact, there exists u € Ta such that d(fa,u) = d(fa,Ta)--- (ii)
Consider

afo, Ty = I d(fb.e)

< max{d(fb, fa),d(fa,u), . ien;b d(u,e)}

<max{d(fa,Ta),d(Ta,Th)}  from(i)and(ii)
< max{d(fa,Ta),d(fb,Th)} from(i)and(2.5)

Thus d(fb,Th) < d(fa,Ta)--- (iii)
Now

d(z, fa) < max{d(z, fb),d(fb, fa)}
<d(fa,Ta) from(i)and(iii)

Thus z € B, and By C B, for any B, € A;.Thus B} is an upper bound in
A for the family A; and hence by Zorn’s Lemma, A has a maximal element,say
B,,ze X.

Suppose fz ¢ T.

Since Tz is compact, there exists k € Tz such that d(fz,Tz) = d(fz,k). From
(2.4), there exists w € X such that k = fw.

Thus d(fz,Tz) = d(fz, fw) - (iv)

Clearly z # w. Now,

d(fw, Tw) < H(Tz,Tw)
< max{d(fz, fw),d(fz,Tz),d(fw,Tw)}
=d(fz, fw) from(iv).

Hence fz ¢ B,,. Thus B,  B,,.
It is a contradiction to the maximality of B,. Hence fz € T'z.
Further assume (2.6) and (2.7).
Write fz=p . Then p € Tz. From (2.6),
d(p, fp) = d(fz, fp) < HTfz,Tp) = H(Tp,Tp) = 0. This implies that fp = p.
From (2.7), p= fp€ fT2 CTfz=Tp. Thus fz =p is a common fixed point of f
and T.
Suppose ¢ € X, q # p is such that ¢ = fqg € Tq. From (2.5) and (2.6) we have

d(p.q) = d(fp, fg) < H(Tfp,Tq)

= H(Tp,Tq)

< max{d(fp, fq),d(fp, Tp),d(fq,Tq)}

= d(p;q)-.
This implies that p = g. Thus p = fz'is the unique common fixed point of f and
T. B S : a

Remark 10. If f = I (Identity map) then the first part of Theorem 9 is the main
theorem of Gajic [2].
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Abstract. This paper studies the effect of time delay and harvesting on
the dynamics of the predator - prey model with a time delay in the growth
rate of the prey equation. The predator and prey are then harvested with
constant rates. The constant rates may drive the model to one, two, or
none positive equilibrium points. When there exist two positive equilib-
rium points, one of them is possibly stable. In the case of the constant
rates are quite small and the equilibrium point is not stable, an asymptot-
ically stable limit cycle occurs. The result showed that the time delay can
induce instability of the stable equilibrium point, Hopf bifurcation and
stability switches.

Key Words: Predator-prey, Limit cycle, Time delay, Harvesting rate, Hopf bifurcation.

1. INTRODUCTION

The Lotka-Volterra model is one of the earliest predator-prey models to be based on
sound mathematical principles. It forms the basis of many models used today in the anal-
ysis of population dynamics and is one of the most popular models in mathematical ecol-
ogy. In both the analysis and experiment, the predator and prey can coexist by reducing
the frequency of contact between them, Luckinbill [13]. In the context of predator-prey
interaction, some studies that treat population can be extended by considering harvesting,
stocking, diffusion, and time delay. In the model with harvesting, some studies relate the
population to the economic problems. The time delay is considered into the population
dynamics when the rate of change of the population is not only a function of the present
population but also depends on the past population.

One predator-one prey system in Hogart et al. [10] where both the predator and prey are

harvested with constant yield has been considered and the stability at maximum sustain-

able yield is established. Martin and Ruan [14] have analyzed generalized Gause predator-

prey models where the prey is harvested with constant rate while Kar [12] considered the
37
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predator-prey model with the predator harvested and suggested that it is ideal to study the
combined harvesting of predator and prey population models. The effect of constant rate
of harvesting has been studied by Holmberg [11] and the results showed that the constant
catch quota can lead to both oscillations and chaos and an increased risk for over exploita-
tion. While the effects on population size and yield of different levels of harvesting of a
predator in a predator-prey system have been explored by Matsuda and Abrams [15] and
showed that the predator may increase in population size with increasing £shing effort.

Brauer and Soudack [3] have analyzed the global behavior of a predator-prey system
under constant rate predator harvesting. They showed how to classify the possibilities and
determine the region of stability. They found that if the equilibrium point is asymptotically
stable, which is determined by a local linearization, then every solution whose initial value
is in some neighborhood of the stable equilibrium point tends to it ‘as the time approaches
infnity. There exists an asymptotically stable limit cycle when the constant rate is small
and the equilibrium point is unstable. A predator-prey model with Holling type using
harvesting efforts as control has been presented by Srinivasu et al. [17] and showed that
with harvesting, it is possible to break the cyclic behavior of the system and introduces a
globally stable limit cycle in the system.

The effect of constant rate of harvesting on the dynamics of predator-prey systems has
been investigated by many authors, see, for example, Brauer and Soudack [2, 4], Myer-
scough et al. [16], Dai and Tang [7], Xiao and Ruan [18]. Some interesting dynamical
behaviors have been observed such as the stability of the equilibria, existence of Hopf bi-
furcation and limit cycles. It is also observed that in some cases, before a catastrophic
harvest rate is reached the effect of harvesting is to stabilize the equilibrium point of the
population system. In this paper we present a deterministic and continuous model for
predator - prey population based on Lotka - Volterra model which is extended by incor-
porating time delay and constant rates of harvesting of both populations. The objective of
this paper is to study the combined effects of harvesting and time delay on the dynamics
of predator-prey model.

2. THE PREDATOR - PREY POPULATION MODEL

We consider a predator - prey model based on Lotka - Volterra model with one predator
and one prey populations. The model for the rate of change of prey population (z) and
predator population (y) is

dz T

piadR 1—-2y_

= rz( K) axy

d .

d_z;‘l = »—cy + Bzy. 2.1

The model includes parameter K, the carrying capacity, for the prey population in the
absence of the predator. The parameter r is the intrinsic growth rate of the prey, c is the
mortality rate if the predator without prey, « measures the rate of consumption of prey by
the predator, 5 measures the conversion of prey consumed into the predator reproduction
rate. All the parameters are assumed to be positive.
The equilibrium points of model (2.1) are (0,0), (K,0) and E* = (z*,y*) = (¢, T(fggc) )

In order to get a positive equilibrium point we assume that K3 — ¢ > 0. The Jacobian
matrix of model (2.1) takes the form

g r—%Z—ay —az
By —c+bz |’
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The characteristic equation of the Jacobian matrix J at the equilibrium point E* i
f) =M+ A 3R 7= (BK —c) and the eigenvalues have negative real parts. It means that
the equilibrium pomts E* is locally asymptotically stable. Furthermore, since K3 —c¢ > 0
then the equilibrium point E* is also globally asymptotically stable, see Ho and Ou [9].

3. THE PREDATOR-PREY MODEL WITH TIME DELAY AND CONSTANT RATE OF
HARVESTING

We consider the predator and prey populations of model (2.1) where both populations
are subjected to a constant rate of harvesting. Before we go to the model with time delay,
we need to analyze the stability of the equilibrium point of the model without time delay.
The model without time delay is

dz

il z(r —bx —ay) — H,

d

?i% = y(—c+ Bz) — H,, G.1)

where 7, b = %, o, ¢, B, H;, H, are positive constants. The constants H, and H, denote
the rate of harvesting for the populations « and y respectively.
By setting 57 dz =0and dy = 0 then we have the relations

z(r—br—ay) = H, 3.2
y(—c+ pz) = H,. 3.3)
From (3.2) we have y = re=be®—Hy which follows that 7% — 4bH,, should be positive in

ax
order to get the equilibrium point in the positive quadrant. Hence we have to assume that

H, < Z—Z. Since H,, is positive, then from (3.3) we should assume that = > %

g

FIGURE 1. Phase plane and directions of the trajectories

From the phase plane, we know that it is possible to get two, one or no equilibrium
points, Figure 1. There are two positive equilibrium points of the model when
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bBz® — (rB + be)z® + (Hpf + Hya + re)z — Hye < 0, for some positive 2 > £. Let
the two equilibrium points be F1 = (z;,y;) and E2 = (x2, y2). The equilibrium point E;
is possible to be asymptotically stable, while the equilibrium point E; is not stable, it is a
saddle point.

To analyze the stability of the equilibrium point F; we linearize the model around the
equilibrium point £ . The Jacobian matrix of the model is

J:<r—2bx—ay —az >

By —c+ Bz
The characteristic equation of the Jacobian matrix at this point is
N —(P+S)A+PS+QR=0, (3.9

where

P r—2bx1 — oy,

Q = oz,

R = By, and

S —c+ Bz;.

Then the equilibrium point E; is asymptotically stable when PS + QR > 0 and
P+ S5 <0

Example 1. Consider model (3.1) with parameters r = 1, b = 0.0, o = 1, ¢ = 0.3,
B8 =0.05 Hy = 0.01, and H, = 0.02. The equilibrium points of the model in the positive
quadrant are E, = (6.42819,0.93416) and E; = (99.56243,0.00428). The eigenvalues
associated with the equilibrium point F1 are —0.02066 £+ 0.54633: and the eigenvalues
associated with equilibrium point Eq are —0.99177 and 4.67437. This reveals that the
equilibrium point E; is asymptotically stable while the equilibrium point E5 is a saddle
point and unstable.

Example 2. Consider again model (3.1) with parametersr =1,b=0.0, a =1, ¢= 0.3,
8 =0.05 Hy = 0.1, and H, = 0.2. There are two equilibrium points of the model in the
positive quadrant, they are, F1 = (10.51819,0.88531) and E; = (95.42203,0.04473).
The equilibrium point E1 has eigenvalues —0.06512 £ 0.66313: and the equilibrium point
E5 has eigenvalues —0.91354 and 4.43147. This means that both equilibrium points are
not stable.

From Examples 1 and 2 we know that the equilibrium E; may be a stable or an unstable
equilibrium point. It depends on the values of the parameters and the level of constant
rate of harvesting. Apparently, the equilibrium point E; tends to the equilibrium point E*
when the harvesting function H and H,, approach zero. If the equilibrium point £* for the
non-harvesting model is asymptotically stable, then the eigenvalues of the Jacobian matrix
of the linearized system have negative real parts. Since the eigenvalues are continuous in
H_ and H, the equilibrium point E; is asymptotically stable for suffciently small H, > 0
and Hy, > 0. On the other hand, when the equilibrium point F; is unstable, there exists an
asymptotically stable limit cycle. Theory of perturbation of periodic solutions, Coddington
and Levinson [5], shows that there is an asymptotically stable limit cycle for small H, > 0
and H, > 0. Thus, the qualitative behavior of the system for H, = 0 and H, = 0 carries
over to small H; > 0 and H, > 0.
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Now we consider the predator - prey population model with time delay and constant
rate of harvesting. Both predator and prey populations are subjected to constant rate of -
harvesting. The model is

dflgt) = rz(t) — bx(t)x(t — 7) — ax(t)y(t) — Hy,
WO —eytt) + pateyot) — A, (335)

A predator-prey model with time delays in the growth rate of the predator population
and the prey harvested with constant rate has been analyzed by Martin and Ruan [14].
They showed that the time delays can induce instability, oscillations via Hopf bifurcation
and switching stability.

To linearize the model about the equilibrium point 7 of model (3.5), let
u(t) = z(t) — =1 and v(t) = y(t) — y1. We then obtain the linearized model

w(t) = (r—bzy —ay)u(t) — bziu(t — 7) — az1v(t)
o) = Byrult) + (~c+ Bra)u(?). (3.6)
From the linearized model we obtain the characteristic equation
AN T) =22+ aide ™ —as) —aze™ + aq, 3.7
where

a; = bz
ay = r—c—bxy+ Bxry — oy
as = -—bcx; +bBz?, and
ag = -—rc+afzxy+ber;+ bﬂxf — acy;.

For 7 = 0, the characteristic equation (3.7) becomes A% + (a; — ag)A — a3 —ag =
0. This characteristic equation is the same with the characteristic equation (3.7). The
eigenvalues of the characteristic equation afe either real and negative or complex conjugate
with negative real parts if and only if

a1 —azy >0 and —az+aqg>0. 3.8)
Hence, in the absence of time delay, the equilibrium point E; is locally asymptotically
stable if and only if both conditions a; — a2 > 0 and —ag + a4 > O are satisfed.
Now for 7 # 0, if A = iw, w > 0, is a root for the characteristic equation (3.7), then
we have

w? + ariw cos(wT) + aywsin(wT) — aziw — az cos(wt) + azisin(wr) +ay = 0.

Separating the real and imaginary parts, we get

—w? + a4 + aqwsin(wr) — azcos(wr) = 0
—apw + arwcos(wT) + azsin(wr) = 0,
or equivalently
—w?tas = -auwsin(wr) + az cos(wr)

Gow = aquwcos(wT) + azsin(wr). 39
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Squaring both sides gives

wt — 2040° + 0§ = 02w sin®(wr) — 2a 03w sin(wT) cos(wT) 4 a2 cos?(wT)

asw? = a?w? cos?(wr) + 201 aswsin(wT) cos(wr) + a2 sin? (wr).

Adding both equations and regrouping by powers of w, we obtain the following fourth
degree polynomial

w* — (a3 +2a4 — a3)w* +af — a3 = 0. (3.10)

Then we obtain

1
5{(a? + 200 — a}) + V(a? +2a0 —ad)? —4(af —ad)}.  @.1D)

From the equation (3.11), it follows that if

wi=

, a3 —2a4 —a?>0 and a3 —a3 >0, (3.12)
then the equation (3.10) does not have any real solutions.

To £nd the necessary and suffcient conditions for nonexistence of time delay induced
instability, we now use the following theorem.

Theorem 3. (Kar, [12]). A set of necessary and suffcient conditions for an equilibrium
point (T, y.) to be asymptotically stable for all T > 0 is

(1) The real parts of all the roots of A(X, 0) = 0 are negative,

(2) Forallrealw and T > 0, A(iw, ) # 0, where i = /—1.

Theorem 4. If conditions (3.8), (3.12) and Theorem 3 are satisfed, then the equilibrium
point E; is locally asymptotically stable for all T > 0.

Again, if
ai — ai>0,05—-2a4—0a3<0, and
(a3 — 2a4~a?)? > 4(af — a3), (3.13)

hold, then there are two positive solutions of w% . Substituting w3 into equation (3.9) and
solving for 7, we obtain

.1 w aw? — a104 + aga 2k .
T,;t = — arctan{ (@ 2i 1 22 3) + —W,k =0,1,2,--- . (3.1
Wi a1a2wi + az(as — wy) Wi

Differentiating equation (3.7) with respect to 7, we obtain

(2X —az + a1e7 > — (agh — age"”))% = AMa1 A — az)e™7,
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therefore
(_@)~1 _ 2\ — Qa9 + a1 I
dr  Mah—a3z)e= T Aajh—a3z) X
From equation (3.7), we have e~ " = %—TG%Q Then we obtain
(dﬂ)‘)—l_ 2)\—(12 + a _I
dr’ A2 —agh—a4)  Aar—a3z) A
dA 2)—as ay T
(d )~ '= — AV —azr—aq) + Maii—az)  A°
Thus
s sgniRe(P) i
. 2\ —aq aq
= R =iw T Re(-—— )a=iw
sten{Rel 7 o 7o = TR GG —ag
-7
+ Re(T)x\:iw}
. 2iw — ag ai
= R Re(————
sign{ e(—iw(—w2 — agiw + a4)) + e(iw(aliw — a3)
-7
+ Re(zD)

a2 +2w? — 2a4
adw? + (—w? + aq)? a1w2 + a3

= sign{— 3}

From equation (3.10), we know that
2w + a2 = wt + (a3 — 2a4)w? + a2 = adw? + (—w? + a4)?,

then we obtain

. d(Re)) _ a2 + 2w? — 2a4 a?
sign{ dr B = sign{ asw? + (—w? +a4)?  a3w? 4 (—w?+ a4)2}
= 51gn{2w — (a% +2a4 — a2)}. (3.15)

Theorem 5. Let 'r,;t be defned by equation (3.14). If the conditions (3.7) and (3.13) are
satisfed, then the equilibrium point E is stable when T € [0, To U7 'rfr ) U

- U(m5 1,7k and unstable when 1 € [75 75 ) J(rit, ) U - U(mt v, 7 1)s for
some posmve integer m. T herefore there are bifurcations at the equilibrium point Ey when

T——Tk,k—012

Proof. Since the conditions (3.8) and (3.13) are satisfed, then to prove the theorem we
need only to verify the transversality conditions, see Cushing [6],

d(ReA d(R:
(e)l___+>0 and (e)\)':_<0’
dr T dr Tk

dBeA)| .+ >0and d(Re’\)l - <0.
T—lT _lTk

From (3.15) and (3.11), it follows that
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. d(Re .
s1gn{—(j7_—)})‘:iw+ = sign{2w? — (a} + 2a4 — a3)}

= sign{\/(af + 2a4 — a2)? — 4(a? — a3%)},

therefore,

d(ReX)

dT ,u:u+,T:T: > 07
d(];e-)‘) !u):uur,T:'r: > 0

Again,

d(Re))

sign{2w? — (a? + 2a4 — a3)}

sign{ “ - i

= sign{—1/(a? + 2a4 — a2)? — 4(a? — a3?)},

therefore,
d(Rel)
- <0.
dr lu:uf yT=Ty,
Hence, the transversality conditions are satisfed. This completes the proof. ]

Example 6. Consider model (3.5) with parameters r = 3.5, b =004 a =1, ¢ = 0.3,
g = 005, H, = 0.02, and H, = 0.01. The equilibrium point of the model is E; =
(6.06146,3.25424). For 7 = 0, the Jacobian matrix of the model associated with the
equilibrium point has eigenvalues —0.11804 % 0.98570i. This means that the equilibrium
point of the model without time delay is stable. The conditions (3.8) and (3.13) are satisted.
Some trajectories of x(t) and y(t) with various time delays arve given in Figures 2, 3, and
4.

From Figures 2a and 2b with time delay 7 = 1.2, the equilibrium point

(6.06146, 3.25424) is stable. Figures 3a and 3b with time delay 7 = 1.53 show that the
equilibrium point (6.06146, 3.25424) is unstable. The £1st critical value of time delay is
7 = 7§ = 1.37941. When 7 < 1.37941, the equilibrium point (6.06146, 3.25424) is
asymptotically stable; when 7 = 1.37941 the equilibrium point (6.06146, 3.25424) loses
its stability; and when 7 > 1.37941 but less then the second critical value of time delay, the
equilibrium point (6.06146, 3.25424) becomes unstable and there is a bifurcating periodic
solution, see Figure 4. Following Theorem 5 we have

= 1.37941, o = 5.39314,
= 6.98104, 77 = 12.53884,
5 = 12.58266, 75 = 19.68453,
5 = 18.68453, and T = 26.83023.

Then we have 2 stability switches from stability to instability and to stability. -
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FIGURE 2a. Trajectory of prey with 2(0) = 6.0715 and 7 = 1.2

3.265 Y T Y
3.26 g --------------- fr --------------- fr -------------- .
3.255 [
y(t)
325 HE3bF
3.245 i : : —i
1] £0 100 150 200
timet

FIGURE 2b. Trajectory of predator with y(0) = 3.2642 and 7 = 1.2

4. DISCUSSION

In the analysis of the positive equilibrium point of model (3.1), it is quite diffcult to
determine the value of the equilibrium points analytically. We just state that there exists
either one, or two, or none positive equilibrium points by inspection the phase plane of the
model. In the case of two positive equilibrium points occur, one of the equilibrium point
is possibly stable and the other is a saddle point. In this paper, we just analyze the case
of there exist two positive equilibriuni points and focus on analyzing the effect of the time
delay on the stable equilibrium point. Actually we may also try to analyze the effect of the
time delay on the stability of the unstable equilibrium point.
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FIGURE 3b. Trajectory of predator with y(0) = 3.2642 and 7 = 1.53

There is still a lot of work to do in the predator-prey models with time delay and har-
vesting. For example, it would be interesting to consider time delay and harvesting in gen-
eralized Gause-type predator-prey model and in some another generalized predator-prey
models as in Martin and Ruan [14]. It would also be interesting to study the Wangersky-
Cunningham model with some delays in both the predator and prey model as in the Bartlett’s
model, see Bartlett [1] and Hasting [8].
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Abstract. In this paper certain order properties are investigated
which the products of ordered linear spaces and ordered normed
spaces inherit from their component spaces.

1. INTRODUCTION

F. Riesz, H. Freudenthal, L.V. Kantorovitch, Kakutani and others initiated the
study of ordered linear spaces in the late 1930’s. The theory developed into a math-
ematical discipline around 1950’s. It is now one of the most important branches of
functional analysis being effectively used to solve such problems, which are posed in
more general setting. Several authors have studied regarding products of ordered
linear spaces. Bonsall {5], Peressini [12], Jameson [9], Dalen [7], Cristescu [6], Mar-
tin [11], Karim [10] and Hong (8] have significant contributions in this area. The
authors investigated [1] the inheritance of order properties from ordered product
spaces to their component spaces through projections. In [2] relatively uniform con-
vergence, order convergence etc., in product spaces of ordered linear spaces have
been discussed. Order-completeness and order-separability in product spaces of
ordered linear spaces were studied in [3].

A little work is done with reference to the order properties of ordered normed
spaces. The first author attempted to investigate the mutual relationship of ordered
product normed spaces and their component spaces in [4]. In section 3 of this article
we mainly discuss how a base for the wedge W of a product ordered linear space can
be investigated. Section 4 includes some order properties, which are closed under
the formation of products of ordered normed spaces.

2. PRELIMINARIES

A wedge is a non-empty subset W of a real linear space X such that

(W) W4+WCW,
(W3) aW C W for a >0,

“The wedge W in X defines an ordering or preorder relation (a reflexive and tran-
sitive relation) ” <” on X by

49
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cr<yesy—zecW
which is compatible with the linear structure of X , that is, ” < ” satisfies the
conditions:
(01) z2yeXe<y=zt+z<yt+zforallze X
(09) z,ye X,z <y,a>0=ar <ay

A wedge W in X is said to be acone if WN(—W) =01ie,z,—z € W =2=0.
A cone C in X defines a partial order relation ” < ” on X. If the partial order
(resp: ordering) on the real linear space X is due to a cone C (resp: a wedge W)
then we call X an ordered (resp: a pre-ordered) linear space with cone C(resp:
wedge W). The element z of an ordered linear space (X, <) is said to be a positive
element if z > 0 and the set X = {x € X : £ > 0}is referred to as a positive cone.

3. ORDER PROPERTIES OF PRODUCT SPACES OF ORDERED LINEAR SPACES

It is well known that if W, (resp: C, ) is a wedge (resp: cone) in the real linear
space Xo where o € I then W =[], W, (resp: C = [[,¢; Ca) is a wedge (resp:
cone) in the product linear space X =[], c1 Xo - Thus the product linear space X
is a preordered (resp: ordered) linear space for the ordering (resp: order) generated
by the wedge W (resp: cone C).

Using the same order notation in each space, the ordering (resp: partial order)
associated with the wedge W (resp: the cone C) is given by

(1, 22y oy Ty o) S (Y1,Y2 s Yy or) © T S Yo forall o€l

Theorem 1. Let X1, Xs, ..., X, be preordered linear spaces with wedges
Wi, Wa, ..., W, respectively. Let X =T[_| Xo and W =[], W, , then
MHW-W=XeW,-W,=X,,a=1,2,...,n.
(2) (e1,ea,...,en) is an order unit in X < e, s an order unit in X, for every
a=12.,n.
(3) W is Archimedean < each W, (a=1,2,...,n) is.

Definition 2. Let X be a preordered linear space with wedge W. A base for the
wedge W is a convex subset B such that for each z in W — {0}, there exists A > 0
and b € B such that the representation £ = Ab is unique.

Let X and Y be preordered linear spaces with wedges W and W' respectively.
Given the bases B of W and B’ of W’ , what the basis is of W x W’. A natural
suggestion would be to try B, = Bx B’ . Then given (z,y) € X XY there are unique
A,o>0and b€ B,b € B such that z = A\b and y = ob’ so that (z,y) = (\b, ob’).
Obviously, this construction does not give us a base. For example, consider R?
with the usual positive cone. A base B is the line segment joining the points (1, 0)
and (0,1) : a typical element has coordinates (z,1 — z) with 0 < z < 1. A base
B’ for R is the point 1, so that B x B’ = {(z,1 — z,1) : 0 < z < 1} which cannot
be a base for a cone in R®. On the other hand convex cover of the three points
(1,0,0),(0,1,0) and (0,0,1) is a base for the usual positive cone of R®. This leads
us to :

Theorem 3. Let X and Y be preordered linear spaces with wedges W and W'
respectively and B , B’ be the bases for W and W' respectively. If 0 < XA < 1, then
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B, ={(Xb,(1=\)¥'):be B,V € B'}
is a base for W x W'.

Proof. Let A= (z,y) € W x W’ then z € W and y € W’. By the definition of B
and B’ there are unique k,h >0 and b € B,b’ € B’ such that z = kb and y = hb'.

Put A = 7% so that 1 — A = 2. Thus

by = (Ab, (1 — M) € B, and (z,y) = (kb, hb').
Now 7
(z,y) = (k+ h)(5250, 725b) = (k+ R)(Ab, (1 = MV) = (k + h)b,

By construction b, and k + h are uniquely determined from (z,y). Hence B, is a
base for W x W'. I

Definition 4. Bonsall [5] defines a perfect subspace as a subspace E of an ordered
linear space X with an order-unit e, which satisfies the following condition:

"given x in E and € > 0, there exists y in E such that y +ce > = and y +ce > 0

Theorem 5. Let E; (1 = 1,2,...,n) be perfect subspace of ordered linear space X;
with order-unit e;. If E =[], E; and X = H?:l X;, then E is a perfect subspace
of X.

Proof. Since e = (ey,€q,...,€,) is an order-unit in X, therefore by Theorem 1(2),
the result follows. ‘ O

4. ORDER PROPERTIES OF PRODUCT SPACES OF ORDERED NORMED SPACES

If X;(i=1,2,...,n) is a normed linear space then X = [[-, X; is also a normed
linear space with norm defined by

(21, 22, s o) | = |21 ]l + [l22]l + - + llznll
OR

(@1, 22, oo zn) || = max {[|z1]], |z2]], .., lznll} or [lz1] V [lz2llV ... V]|zal

The two norms are equivalent and the choice as to which of the two is to be used
depends on the context.

In [4] the first author has studied inheritance of certain order properties from
product ordered normed spaces to their component spaces. In this section some
order properties have been studied which the product normed spaces inherit from
their component spaces.

Definition 6. A preordered normed linear space X is said to have the property
(Ry) if given z,y € X, |lz]| < |ly|| whenever —y <z < y.

Theorem 7. Let X1,Xs,..., X, be preordered normed linear spaces with wedges
Wh, Wa, ..., W,, respectively. Let X =T1_; Xo and W =11, Wa , then

(1) X has the property: "Giwen z € X with ||z|| < 1, there isy > z, —x with
lyll < a” if each X; has this property.
(2) X has property (R1) if each X; has property (R1);
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Proof. (1) If x = (z1,22,...,2,) € X with ||z]|| < 1, then for every z; where
i=1,2,3,....n, ||z < max{||z:|, ||z2ll, - |znll} = |lz|| £ 1. Therefore,
by hypothesis there exists y; in X; with y; > z;, —2; and ||y;|| < . Taking
y = (Y1, 42, -, Yn), we get
y 2 z,—z and [ly|| = max{[lys |}, ly2ll, ... lgnll} < e

(2) Let z,y € X be such that —y <z <y. If z = (21,29,..,2,) and y =
(y1,Y2, -, Yn) then —y; < z; < y; where ¢ = 1,2,3,...,n. Since each X;
has property (R;), therefore, ||z;|| < |ly;|| for every i = 1,2,3,,n. Now,
Izl = llzall + N2l + - + lzall < llyall + g2l + - + lyall = lly]] -

O

Corollary 8. (1) Part (1) implies that X has the property: ”Given z € X

with ||lz|| <1, there is y > z,0 with |[y|| < a” if each X; has this property.

(2) Part (2) itmplies that norm on X is monotonic if norm on each X; is mono-
tonic,

Definition 9. A subset D of a preordered linear space (X, <) is said to be directed
if for every piar of elements z,y from D there exist elements u,v in D such that
u>z,yand v <z,y.

Theorem 10. Let X; be a preordered normed linar space with wedge W;,i =
1,2,.,n. Let X =[], X; and W =[], W, , then

(1) the open(closed) unit ball in X is directed if open(closed) unit ball in each
X; is directed;
(2) norm is additive on W if norm is additive on each W;.

Proof. (1) We show that open unit ball in X is directed whenever the open unit
ball in each of its component spaces is directed. The case for the closed unit
ball is similar. Let z,y € X with ||z| < 1,|jyll < 1. If z = (z,z2,..., )
then for every i = 1,2,3, ..., n, ||lz:|| < max{||z|], |z2ll, .., |znll} = |lz]| < 1.
Similarly, if y = (y1, Y2, -.-, yn) then {ly;|| < 1. Since unit ball in each X; is
directed therefore for each z;,y; of the unit ball in X; there exist u; and v;
in X; with {ju;|| < 1 and ||v;| < 1 such that u; > @;, y; and v; < z;, ;. Tak-
ing u = (u1,ug,...,up) and v = (vy,va, ..., v,) we get JJul}l <1 and |jv|| <1
such that v > z,y and v < z,y.

(2) Let z,y e W. If 2 = (21,73, ..., 20) and y = (y1,¥2, ..., Yn) then z;,y; € W;
where i = 1,2,3,...,n. Since norm on each W; is additive, therefore, for
every 1 = 1,2,3,...,n, ||$’L + y1|| = “IZ” + “yZH :

Now

lz+ |l (1 4+ y1, 22 + y2, -y Tn + Yn) |
lzy + vl + llz2 + ol + ... + |20 + ynl|

=zl + vl

which shows that the norm is additive on W.

Definition 11. Let (X, ||.||) be an ordered normed space with cone C.
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(1) The cone C is said to be a -normal if |u|,||v|| < 1 and v < z < v imply
|z|| < @ . In other words, the cone C is said to be c-normal if u <z < v
implies that ||z]| < a max{|ull, |||}

(2) The cone C is said to be a -generating if given £ € X there are u,v € W
such that z = u — v with |ju|| + ||v|| < a|lz||.

(3) X is said to be (a,n)-generating if given z,z9,...,2, € X with |z;]] <1
(=1,2,3,...,,n) we have > z; such that ||z|| < .

(4) X is said to be (a, n)-additive if given z,, s, ...,z, € X we have

n n
Soleill < o>z
Jj=1 i=1

Theorem 12. Let X1, X3, ..., X, be ordered normed linear spaces with cones
Cy,Ca, ..., Cy, respectively. Let X =1, X; and C =[]._, C; , then
(1) C is @ -normal if each C; is o -normal,
(2) C is o -generating if each C; is a -generating
(3) X is (o, n)-generating if each X; is (a, n)-generating,
(4) X is (o, n)-additive if each X; is (o, m)-additive.

Proof. (1) Let z,y,z € X besuch that y <z < 2. If z = (z1,%2,...,Zn),y =
(Y1, Y2y -y Yn) and z = (21, 2a, ..., 2, ) then y; < z; < z; where i =1,2,3,...,n.
Since each C; is & -normal, so {|z;|| < cemax{||y:|, |zl }. Now,

[l || V [lz2l| V... v {znl]

a (lyall Vllzel) Ve (ly2ll v llz2])) V... Ve (lynll V llzall)

a [ max {{lyll, lw2ll, - llynll} v max {{lz0]l, [[22f], -, [1zn]}]

o max {|lyl, [|z[l}

which shows that the cone C' is « -normal.

T VAN |

(2) Let z = (24, ig, ..-,Zn) be an element of X. Since each C; is « -generating,
therefore for z; in X;(i = 1,2,3,...,n) there are u;,v; in C; such that
z; = u; — v; and (lugl| + il < @ |lz;]|. Taking v = (uy,us, ..., u,) and
v = (v1,v2, ..., Un) then u,v € C for which £ = u — v. Further,

n n n n
lall + loll = Y laall + D lloill = >l + [losl) < @ Y flwill = e |||
=1 i=1 i=1 =1

which shows that the cone C is « -generating.

(3) Let z1,z2,...,2n € X with |z;]| < 1 where j = 1,2,3,...,n. Then z; =
(g{, gg, .-»6}) where each gf(z =1,2,3,...,n) is an element of X;. Since for
each fixed j =1,2,3,...,n, ||z;|| = maxi<i<n [|¢]]| < 1, therefore, i <1
for every i =1,2,3,...,n. Also, since each X; is (o, n)-generating therefore
for each fixed 1 = 1,2, 3, ..., n there exists n; in X; such that n; > g{ for all
i=1,23,..,n,and ||n]| <« . Taking, £ = (n1,72, ...,Mn) We have, z > z;
for all j =1,2,3,...,n. ‘
Furthermore,

|l = maxi<i<n (]| < .
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showing that X is (o, n)-generating.

(4) Let T1,T2,...,on € X. Then for each j = 1,2,3,...,n, z; = (gf,g%,...,g%),
where ¢] € X;(i =1,2,3,...,n). Since each X; is (o, n)-additive, therefore,
for each fixed 1 =1, 2,3, ..., n,

Yim Il < e 1325 S

Now,

nzjn:i(i d1)=>_(

i=1 i=1 j

n n n n
J

S )Saz dl|=a sz
1

1 i=1||j= =1

-
&

Il
i

j=

which shows that X is (a, n)-additive.

Definition 13. Let (X, ||.||) be a normed linear space;

(1) A wedge W in X is said to have the property (G) with constant « if, given
z in X there exists y in X such that —y <z <y and ||y|| < a|z||.

(2) A wedge W in X is said to have the property (N) with constant « if]
—z < y < z implies that |ly|| < «f|z].

Theorem 14. Let X; be a preordered normed space with wedge Wi, i =1,2,...,n.
Let X =i, Xi and W =[[;_, Wi , then
(1) the wedge W has the property (N) with some constant « if each W; has the
property (N) with constant ¢;.
(2) the wedge W has the property (G) with some constant « if each W; has the
property (G) with constant ;.

Proof. (1) Let z,y € X be such that ~z < y < z. If z = (z1,22,...,Zp)
and y = (y1,Y2, ---,Un) Where z;,4; € X; then —z; < y; < z;, for every
i=1,2,...,n. Since each X; has property (N) with constant ¢;, therefore
Jall < cullzi]l. Now since,
lyall + lgall + - + lynll < axlloal] + gl + .+ anlloa]
therefore, ||y|| < a||z|| where ¢ = max{a1,az,...,an}.

(2) Let z € X then z = (21,29, ...,2,) where z; € X; for every ¢ =1,2,...,n.
Since each X, has property (G) with constant «;, therefore, there exist y;
in X; such that —y; <z; <y, and [Jyill < oslz]-

Taking @ = max{ay, az, ...,, }, we obtain a point y = (y1,¥2, .-, Yn) in X
such that , —z <y <z, and |jy|| < a||z||.

O

Definition 15. Let X be a preordered linear space with‘wedge W. A subset D of
X is said to be decomposable if for each u in D there exist u;,us in D NW such
that v = aju; — agus for g, 00 > 0 with a3 + @ = 1. A wedge W in a normed
linear space (X, ||.||) gives an open decomposition of X if given x in X there exist,
a >0 and ug,up in W such that z = u; — up and |Juq]|, |uz|| < |||
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A wedge W in a normed linear space (X, ||.||) gives a bounded decomposition of
X if it gives an open decomposition of X [9)].

Theorem 16. If the wedge W; in a preordered normed space X; gives a bounded
decomposition of X; for every i = 1,2,...,n, then the wedge W = [, W; in
X =TI, X; gives a bounded decomposition of X.

Proof. Let © € X then z = (z;,z2,...,z,) where z; € X; for every 1 = 1,2,...,n.
Since each W; gives a bounded decomposition of X; , therefore, there exist a > 0
M w® in W; such that z; = wgl) — w® and ||w£1)||, [|w§2)|| < oy|zi||- Let

and w;, w; i

wy = (wgl),wél), ...,wsll)) and woy = (w§2),w§2), ...,wf)) then w1, we € W for which

z = w1 — wy and |Jwy ||, ||wz]} < @||z|| where @ = max{a, @, ..., }. O
CONCLUSION

Order properties are of much importance when studied with reference to the
context. For example, first duality theory in ordered linear spaces is due to « -
normal and a-generating wedges whereas second duality theory, which is concerned
with order-intervals of the form [—z,z], is due to order property (G) and order
property (V) of wedges. A rich theory of ordered linear spaces grows through these
order properties. This article discusses various order properties of ordered normed
spaces, which are closed under the formation of products. We also investigate how
product of two base-normed spaces would be a base-normed space.

ACKNOWLEDGMENT

The authors are thankful to the referee for careful reading of this paper and
providing valuable suggestions to improve the presentation of the paper.

REFERENCES

(1] M. I. Bhatti and M.N. Chaudhary, Cones in Product Spaces and their Order Properties
through Projections, Pakistan Journal of Scientific Research 54 (1-2) (2002).
[2] M. L. Bhatti, Order Convergence in Product Spaces of Ordered Linear Spaces, Research
journal of University of Engineering and Technology, 14 (1-2) (2003).
[3] M. I. Bhatti, Order Complete Spaces, Order Separable Spaces and their Products, Pakistan
Journal of Scientific Research, 56 (1-2) (2004).
[4] M. I. Bhatti, Inheritance of Order Properties from Product Ordered Normed Spaces to their
Component Spaces, Pakistan Journal of Science, 56 (3-4) (2004).
[5] F.F. Bonsall, Extreme Mazimal Ideals of a Partially Ordered Vector Space, proc. Amer.
Math. Soc., 7 (1956), 831-837.
[6] R. Cristescu, Ordered Vector Spaces and Linear Operators, Editura Academiei Bucuresti,
Romania (1976).
[7] J. V. Dalen, Finite Products of Locally Compact Ordered Spaces, Ph.D thesis, Vrije Univer-
siteit, Amsterdam, (1972).
[8] S. Hong, J. Y. Hyun, H-K Kim and S-M Kim, Linear Discrepancy of the Product of Two
Chains, Order 22, 63-72, Kluwer Academic Publishers, 2005.
[9] G. J. O. Jameson, Ordered Linear Spaces, Lecture Notes in Mathematics, Springer-Verlag
Berlin-Heidelberg New York, 1970.
(10] B. Karim, On Products in Lattice-ordered Algebras, J. Aust. Math. Soc. 75 (2003), 23-40.
[11] Martin, G. and S. Shelah, Antichains in Products of Linear Orders, Order 19, 213 - 222,
Kluwer Academic Publishers, 2002.
[12] A. L. Peressini, Ordered Topological vector spaces, Harper and Row, New York, 1967.






Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 40 (2008) pp. 57-62

Maximum Principles For Parabolic Systems

M. M. Al-Mahameed
Department of Mathematics
Irbid National University
Irbid Jordan.

Email: al mahameed2000@yahoo.com

Abstract. In this paper we introduce a strong maximum prin-
ciple for some nonlinear parabolic systems with convex invariant
regions. We also obtain a version of the Hopf boundary lemma for
the systems.

AMS (MOS) Subject Classification Codes: 35B50, 35K40.
Key Words: Maximum Principles, Parabolic Systems.

1. INTRODUCTION

Consider the parabolic system

n
%% — A(z,t,u) ]Zl ai;(z,t u)aai% +ZB (z,t, u) = f(z,t,u) (1.1
Uy
on D x (0,T),where u = , D is a domain in R", A(z,t,u), and B; (z,t,u)
Um

(i =1,2,...,n) are m x m matrix- valued functions on D x (0 x T) x R™, a;;(z,t,u)
(i,j = 1,...,n) are real valued functions.

Under the hypothesis that the differential operator on the left- hand side of (1.1)
is locally uniformly parabolic on D x (0,7), that (1.1) has a C? convex invariant
region § C R™, and under some regularity conditions, we will show that, for (1.1)
Weinberger’s version of strong maximum principles holds, which says that if there
exist a (z*,¢*) € D x (0,7) such that u{z*,t*) € 35, then u(D x (0,t*]) C 8S.
Moreover, if in addition that D satisfies the interior sphere condition, we will prove
that a version of the Hopf boundary lemma holds for (1.1).

The weak and strong maximum principles for the case that in (1.1), A(z,t,v) =1
and B; (i = 1,2,...,n) are real valued functions are studied by [6], the boundary
point lemma, however, was not mentioned in [6] ( see the main theorem in [3]).
Our basic method is the same as Weinberger’s. The local defining functions of 85
plays an important in [6], we prefer the distance function of 85, making the proofs
more geometric.
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An extension of the boundary lemma was found by W. Troy [11] for nonnegative
solution of the elliptic system

Za 36:;1 sz 6%—}-20” T)u; =0
ik=1 TiFTE 5=
on D, wherei=1,....m. Cj;(z) >0on D fori 7&],1 <i,5<m.

The weak maximum principles for (1.1) also has been studied by K. Chueh, C.
Conley and J. Smoller [1]. Their results show that for a C* domain § C R™ to be
an invariant region we need the following condition which we assume that it holds
through this paper.

Condition 1. § is convex and for any u in 8S, the inward unit normal v(u) at
u is a left eigenvector of A and Bi(i =1,2,...,n), and v(z).f(z,t,u) > 0 for all
(z,t) in D x (0,T).

Weakly coupled semilinear parabolic systems in unbounded domains in R? or R3
with polynomial nonlinearities are investigated in [2], and three conditions to in-
sure the stability of the zero solution with respect to nonnegative H?-perturbations
are given.[4] formulate a criteria for validity of the maximum norm principle as a
number of equivalent algebraic conditions describing the relation between the ge-
ometry of the unit sphere of the given norm and coefficients of the system under
consideration.

In this paper we use the distance function of S instead of choosing a general
defining function as in [6] since it makes the proofs more geometric.

2. PRELIMINARIES

All materials discussed in this section can be found in the Appendix of chapter
14 of [10], and they are included here for the reader’s convenience.

First recall some classical definitions. Let S be a C? domain in R™ with 45 # @.
For any u € 95, let v(u) denote the unit inner normal to 95 at u. For a fixed
ug € 9§ , construct a coordinate system (uq, ..., %) such that u,— axis lies
in the direction v(ug) and the origin is at ug. Near ug, 3S can be expressed by
Um = @(U, ..., Up_1). Then the Gaussian curvature of 85 at ug is det[A%¢(0)] and
the principal curvatures of 95 at wg are the eigenvalues ky, ..., k-1 of the matrix
[4%¢(0)]. Now if we rotate the coordinate frame with respect to the u,, axis, we
can let uy, .., un, axes lie on eigenvector directions corresponding to ky, ..., km—1,
respectively. We call such a new coordinate system a principal coordinate system
at ug. In this system [A2¢(0)] = diaglky, ..., km—1]-

For u € R™, the distance function d is defined by d(u) = dist(u,dS).

Lemma 2. Let S be a C* domain in R™.k > 2 and 0S # @. Then there exists an

open (w.r.t the topology of S ) subset G of S such that 0D C G, d in C2%(G), and
for any u in G, ezists unique y(u) in 8S such that

u = y(u)| = d(u)(i-e u = y(u) + v(y(u))d(w)),

Ad(u) = v(y(w)),1 — ki(y(u)d(w)>0, (i=1,..,m—1)
where k;(y(u))(t = 1,..m — 1) are principal curvatures of 8S at y(u). Moreover,
foru € G, at a principal coordinate system at y(u),

_km—l

A%d(u)] = d
[A%d(u)] wg[l_kd Srpr—

0]




Maximum Principles For Parabolic Systems.... . 59

3. THE MAIN REsuLT AND ITS PROOF

We assume that u is a solution of (1.1) and A, a;; , and B; are functions of (z, t)
only due to the compositions.

Theorem 3. Suppose that A, a;;, and Bi(1 < i,j < n) are locally bounded on
D x (0,T), Amxm and (a;;),,x,, locally uniformly positive - definite on D x (0,T)
andf(z,t,u) is Lipschitz continuous in u locally uniformly with respect to (z,t)
on D x (0,T). Assume also that there exist a C? domain S in R™ s.t condition
(1) is satisfied. Then if u(D x (0,T)) C S and there exists (z*,t*) € D x (0,T)
s.t u* = u(z*,t*) € 99, then u(D x (0,t*]) C dS. Furthermore , if there exist a
%9 € 0D and 0 <ty < T s.t D satisfies the interior sphere condition at xy and u
is continuous at (zy,to) with u(zy,to) € 05, then either u(D x (0,tg]) C 0S or
v(u(zy,to)).0u/0n < 0.(if the directional derwative exists), where 1 is any outward
pointing direction to (0D x (0,T) at (z,,10),[3].

Proof. Let us take a bounded open neighborhood D; C D of z* and 0 <¢; <t* s.t
u(Dy x [t1,¢*]) C G where G is defined in Lemma (2). let p(z, ¢, v) be the eigenvalue
corresponding to the eigenvector v of A(z,t) and \;(z,¢,v) be the eigenvalue of
Bi(z,t).Then on D; X [t1,t*]

3813 w(z, t,v(y(ulz,t))) Z ai;(z, t + Z)\ (z,t,v(y(z t))))aii

i,j=1 0%i oa; i=1

is uniformly parabolic ( for definitions of v and y(u)), [1]..
let d(z,t) = d(u(z,t)). then on D; x [t;,t*] we have

- Ou
Ld = Aud(u)a—ﬂ(%tvv(y(u)))
= "L 0%d(u) Oug 8u5 dd(u) O*ug,
X g;la”(x R ( Z | Quadug dz; Oz; aZ Qg Oz;0;
dd(u) dug '
+ZA (5., 0y ) }: o) S
du n 0%u
= Aud(u)g —I{z,t) — p(z, t,v(y(u Z= 8:5 axj
= Ou
+3 Xz, t,v(y(w)) Aud(w) e
i=1 ¢
Ou i 0%y " O
= Aud(u) 5 — Aud(u)A(z, 1) ;1 U Gt + Aud(u) ; B; 5o,
—I(z,t)

= A, du)f(z,t,u) - I(z,t),

where I is defined by the second equality and in the third step we use the fact that
Ayud(u) = v(y(u)) and condition (1). : :
Now by condition (1) again,
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v(y(w)f(@,ty(w) = 0, Le. Aud(y(u(z,?))).f(z,t y(u(z, 1)) =2 0
on Al X [tl,t ]

Hence we have
Ld > Aud(u(,t) f(z,t,u(z, 1) — Aud(y(u(z,1))).f (2, t, y(ulz, 1)) — I(z,1)

= c(z, 1) (u(z, 1) — y(u(z, 1)) — I(z,1),
where c(z,t) is a vector function in R™ and is obtained by noticing d € C%(G) and
f is Lipschitz in u.c(z,?) is bounded on D; x [t1,t*].
Since

u = y(u) + v(y(uw))d(v),
we have

Ld > c(z, t)v(y(u(z, t)))d(u(z, 1)) — I(z, 1),

i.e.
Ld > c(z,t)d — I(z,t) On Dj X [t1,t*] : (3.2)
where ¢ is bounded.

Next, we prove that I <0 on D; x [t1,t*].
Fix (.’Zo,to) €D x [tl, t*].Since

i d(u) Juq dug
| Ouadug Oz; O,

is invariant under any parallel translation and rotation of v coordinate system, we
assume that we work in a principal coordinate system at y(u(zo,to)) € 8S. Then
by Lemma (2) we have

Did(u(mo,to)) = diag [ k1 —F ]

i .0
1-— kld(u($0,t0)) 1- km_ld(u(.’llo,to)
where kj,...,km—_1 are the principal curvatures of 3S at y(u(zo,tp). Thus

I i m! —ko Oug
- )t = 1j 7t at 7t
0 0)= 32 a(o010) 3 T o) o),

ie.
—E(flloto) Z 1—_#(]%[(:1:0"/—0) Z az] fEO,tO)(Z (‘TO,tO) ("EOvtO) (3'3)

Since S is convex, ks > 0,1 < a < m — 1. Recall in the Lemma (2) that 1 —
ko(y(w))d(u)»>0forue G (a=1.2,..m—1), s0
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I
'E(xo,to) <0 onD; x [tl,t*].

In view of (3.2), we have

Ld > c(z,t) on Dy x [t;,t*].

By the classical strong maximum principle we have, d = 0 on D, x [t;,t*], that
is u(D; x [t1,t*] C 8S. Thus we have proved that u~*(8S) is relatively open in
Dx(0,t*]. Obviously u=!(85S) is relatively closed inDx (0, t*]. Hence u(D x (0,1*]) C
o8S.

To prove the remaining part of the theorem, we choose a bounded neighborhood
D, of z¢ which is relatively open in D as well as a small § > 0 such that u(Dy x
(to — 8,%p + J) C G. By the same way as above we have for some bounded ¢

Ld > cy(z,t)d on Dy x (tg — 6, t9 +0).
Thus the classical boundary point lemma gives the result. |

4. CONCLUDING REMARKS

If the strict inequality in condition (1) holds for all (z,t) € D x (0,t), then
there is no (z*,t*) € D x (0,T). In theorem (3), S can be the intersection of
several C? domains S; which satisfy condition (1). ( In the case that S;’s meet at
angles less than m/2, by this theorem proof, we just need S to satisfy condition
(1). Combining (3.3) with d = 0, we have I > 0. In view of {3.3) we have that
ko > 0 for all « = 1,...,m — 1. Thus we can add to the theorem that if 35
has positive Gaussian curvature everywhere, then u is independent of z when 0 <
t < t*. Theorem (3) holds for elliptic systems corresponding to (1.1) with some
modifications.Furthermore, it’s also possible to extend the boundary point lemma
for domains with corners, 3], [5].
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Abstract. We approximate a locally unique solution of a gener-
alized equations in a Banach space setting using a new midpoint
methods (see (1.2) and (3.10)). An existence—convergence theo-
rem and a radius of convergence are given under Lipschitz and
center—Lipschitz conditions on the first order Fréchet derivative
and Lipschitz—like continuity property of set—valued mappings. We
show that our method (1.2} is locally quadratically convergent using
a fixed points theorem [10]. Motivated by optimization consider-
ations [3], [4] related to the resolution on nonlinear equations, a
smaller ratio and a larger radius of convergence are also provided.
Our methods extend the midpoint method related to the resolution
of nonlinear equations [7].
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution z* of the generalized equation

0 € F(z) + G(z), (1.1)

where F' is a continuous function defined in a neighborhood V of the solution z*
included in a Banach space X with values in itself, and G is a set—valued map from
X to its subsets with closed graph.
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Many problems in mathematical economics, variational inequalities and other
fields can be formulated as in equation (1.1) [14]-{17].
We consider a new midpoint method for g € V being the initial guess and all £ > 0

0 € F(zx) + VF(2k) (yx — 2x) + G(yx)
0 € F(yk) + VF(IICTW) (es1 — Y&) + G(zry1),

where VF(z) is the first order Fréchet derivative of F' at =.

(1.2)

For G = {0}, the mildpoint method was introduced in [1]-[5], [7] to solve non-
linear equations: :

yr =z — (VF(2x)) ™! F(zi) »
T+l = Tk — (VF(Ik —;yk )) F(Ik) (13)

In [7] the convergence of order three of iterative method (1.3) is studied un-
der Kantorovich-type assumptions. A special Lipschitz—type condition on VF' is
used in [1] to obtain a Kantorovich-type convergence theorem. In [5] a midpoint
two—step method is introduced to solve nonlinear equations under mild Newton-
Kantorovich-type assumptions; the obtained results are extended the case in wich
the underlying operator may be differentiable. Ezquerro et al. [11] presented a
. convergence result of method (1.3) using a new type of recurrence relations for this
method. Herndndez and Salanova [12] investigated a modified midpoint method by
Tk + Yk

changing an evaluation of VF at z, = in method (1.3) by an evaluation of

~ operator F'at the same point.

The purpose of this paper is to study the convergence analysis of method (1.2)
under Lipschitz—type conditions on the first order Fréchet derivative and Lipschitz—
like continuity of set—valued mappings.

The structure of this paper is the following. In section 2, we collect a number of
basic definitions and recall a fixed points theorem for set—valued maps. In section
3, we show the existence and the quadratically convergence of the sequence defined
by (1.2). Finally, we give some remarks on our method using some ideas related to
nonlinear equations [3], [4].

2. PRELIMINARIES AND ASSUMPTiONS

In order to make the paper as self-contained as possible we reintroduce some
results on fixed point theorem [3]-[10]. We let Z be a metric space equipped with
the metric p. For A C Z, we denote by dist (z, A) = inf {p(z,y), v € A} the
distance from a point x to A. The excess e from A to the set C C Z is given
by e(C, A) = sup {dist (z,A), z € C}. Let A : X =2 Y be a set—valued map, we
denote by gph A = {(z,y) e X xY, y € A(z)} and A~} (y) = {z € X, y € A(2)} is
the inverse of A. We call B,(x) the closed ball centered at x with radius r.

Definition 1. (see [6], [13], [16]) A set—valued A is said to be pseudo-Lipschitz
around (zo,y0) € gph A with modulus M if there exist constants a and & such that

e(A(y") N Balyo), Ay")) <M ||y —y" ||, for ally’ and y” in By(zo). (2.4)
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We need the following fixed point theorems.

Lemma 2. (see [10]) Let (Z,]| . ||) be a Banach space, let ¢ a set—valued map from
Z into the closed subsets of Z, let ng € Z and let v and A be such that 0 < A < 1
and

(a) dist (no, #(no)) <r(1—A),

(b) e(¢(x1) N Br(no), d(x2)) <A || 21 — 22 ||, V1,22 € Br(10),

then ¢ has a fized—point in Br(no). That is, there exists © € B.(no) such that
z € ¢(x). If ¢ is single—valued, then x is the unique fized point of ¢ in Br(ng).

We suppose that, for every point z in a open convex neighborhood V of z*,
VF(z) exist. We will make the following assumptions:

(HO) The first order Fréchet derivative VF is L-Lipschitz on V. That is

| VE@)-VF@) ISL [[z—y| forallz,yeV. (2.5)
It follows from (2.5) that there exists Lo € [0, L] such that
| VE(z) = VF(@*) |[< Ly ||z~2"| forallz e V. (2.6)

(H1) [F(z*) + VF(z*)(. — z*) + G(.)] 7! is M—pseudo-Lipschitz around (0,z*).

Before stating the main result on this study, we need to introduce some nota-

tions. First, for & € IV and (yx), (zx) defined in (1.2), let us define the set—valued

mappings @, ¥, ¢x : X = X by the following

Q() = F(z")+VF(z*)(.-—2")+G(); ¥x() == Q71 (Z(\); ox() = Q_I(W(k(-)i
2.7

where Z; and Wy, are defined from X to X by

Zi(z) = F(z*) + VF(z*)(x — z*) — F(yx) — VF(Ik ;yk) (z — yx)

(2.8)
Wi(z) = F(z*) + VF(z*)(x — z*) — F(ay) — VF(xg) (z — xk)

3. LOCAL CONVERGENCE ANALYSIS FOR METHOD (1.2)
We show the main local convergence result for method (1.2):

Theorem 3. We suppose that assumptions (H0) and (H1) are satisfied. For every

3ML
constant C > Cy = ———, there exist § > 0 such that for every starting point x

in Bs(z*) (zo and z* distinct), and a sequence (zy,) defined by (1.2) which satisfies
| zh41 —2* S C | zp —2* |2 (3.9)

Remark 4. (a) Theorem 3 remains valid if one replaces the algorithm (1.2) by the
following method

0 € F(zr) + VF(zi) (yx — zx) + G(yr)

(3.10)

Tr +
0 € F(ar) + VF(Z52) (@rr1 — zi) + Glows).

(b) The results of this paper seem also true for a general assumption: F is defined
in a neghborhood V of the solution z* included in a Banach space X with values
in another Banach space Y, and G is a set—valued map from X to its subsets of Y’
with closed graph.
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The proof of Theorem 3 is by induction on k. We need to give two results. In the
first, we prove the existence of starting point yo for zo in V. In the second, we state
a result which the starting point (zq, yo). Let us mention that yo and z, are a fixed
points of ¢ and 1y respectively if and only if 0 € F(z¢) + VF(xg) (yo—z0)+G(yo)

and 0 € F(yo) + VF(%T—H/O) (z1 — yo) + G(z1) respectively.

Proposition 5. Under the assumptions of Theorem 8, there exists § > 0 such that
for every starting point xo in Bs(z*) (zo and x* distinct), the set-valued map ¢g
has a fized point yo in Bs(z*), and satisfying

o — 2" I< C 2o — 2™ |2 (3.11)
Proof. By hypothesis (H1) there exist positive numbers M, a and b such that
QW) N Ba(z"), Q") < M |y —y" II, V', € By (0). (3.12)

Fix § > 0 such that
. /2b 1
) < (50 = min {(1, , 3—L , 5} (313)

The main idea of the proof of Proposition 5 is to show that both assertions (a) and
(b) of Lemma 2 hold; where 79 := z*, ¢ is the function ¢g defined in (2.7) and
where r and A are numbers to be set. According to the definition of the excess e,
we have

dist (z*, ¢o(z*)) < e(Q_l(O) N B,s(a:*),qﬁo(x*)). (3.14)
Moreover, for all point zg in Bs(z*) (z¢ and z* distinct) we have
| Wolz*) | = | F(II*) — F(zo) — VF(zo) (z* — z0) ||
7 I /0 (VF(zg + t(z* — z0)) — VF(x0)) (& —20) di || .

In view of assumption (H0) we obtain

L
IWol@) Il < 5 lla" =20, (3.15)

Then (3.13) yields, Wo(z*) € By(0).
Using (3.12) we have

e(Q—1<o> mBs<z*>,¢o<z*>) - ng_l(O) mBm*),Q-‘l[Wo(x*)J)

I o a e (3.16)
S oll”-
By inequality (3.14), we get
3 * * ML *
G (o, goa)) < ML a2, 3.17)
Since C > Cj, there exists A € [0, 1] such that C(1 — ) > Cj and
dist (%, ¢o(z*)) < C (1= A) || zo —z*||*. (3.18)

By setting r := 19 = C || 2o — z* ||* we can deduce from the inequality (3.18) that
the assertion (a) in Lemma 2 is satisfied.

Now, we show that condition (b) of Lemma 2 is satisfied.
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By (3.13) we have ro < § < a. Using (H0) we have for z € Bs(z*) the following
estimates

| Wo(z) || | E(z*) + VF(z") (¢ - 2%) = F(z0) = VF(20) (z — 20) ||

SN

| F(z*) = F(zo) — VF(zp) (z* —zo) || +

| (VE(z*) = VF(x0)) (z —z*) ||
< Slle* @l +Lo [[a* —zo || |z — 2" |
C b,
< — 44

(3.19)
Then by (3.13) we deduce that for all x € Bs(z*) we have Wy(z) € By(0). Then it
follows that for all ', 2" € B, (z*), we have

e(¢o(z) N Bro(z7), do(z")) < e(¢o(z’) N Bs(z™), ¢o(z")),
which yields by (3.12) and (H0):
e(¢o(z) N Bro(27), ¢o(z")) < M || Wo(z') — Wo(z") ||

M || (VF(zo) — VF(z*)) (z" —2') | (3.20)
MLys || 2" —2'||.

IAIA

A
——— and thus condition (b) of
MLy
Lemma, 2 is satisfied. Since both conditions of Lemma 2 are fulfilled, we can deduce
the existence of a fixed point yy € By, (z*) for the map ¢¢. This finishes the proof

of Proposition 5. (]

Without loss generality we may assume that d <

Proposition 6. Under the assumptions of Theorem 8, there exist & > 0 such that
for every starting point zo in Bs(z*) and yo given by Proposition 5 (o and x*
dzstmct) and the set-valued map 1y has a fized point T, in Bs(z*) satisfying

| 21— |<C 2o -2 |2, (3.21)
where the constant C is given by Theorem 3.

Proof. The proof of Proposition 6 is the same one as that of Proposition 5. The
choice of J is the same one given by (3.13). The inequality (3.14) is valid if we
replace ¢g by 9g. Moreover, for all point zg in Bs(z*) (z¢ and z* distinct), we have

930+y0

[ Zo(z™) | = | F(z*) = Flyo) = VF(—=) (=" — %) |l

— / (VF(yo + t(z" — y0)) - VF(%“’“)) (@ —yo) dt |

In view of assumption (H0) and Proposition 5 we get

1 2o | < LG vl 45 g0 ) w0~ |

< S Qly—z" I+ lzo—z" ) [[yo—2"|

c , (3.22)
< S @Clao—z" P+ |z —a" ) ||z" —mo |

L
< 5 (2C%*5%°+C6) ||z* —=zo |?.
By (3.13) and (3.22) we have
3L
| Zo(z*) | < | zo —z* || (3.23)

2
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Then (3.13) yields, Zy(z*) € By(0). Setting 7 := 19 = C || o — z* ||%, we can
deduce from the assertion (a) in Lemma 2 is satisfied.
By (3.13) we have rg < ¢ < a, and moreover for z € Bs(z*) we have

| F@a*) + V(") (- 2%) — Flyo) = VR ) (2~ yo) |
| F(@) = Floo) = VF(@") (o ~3o) I +
| (VF(@") - VF(=2)) (2 = o) |-

I Zo(z) |

IA

(3.24)
Using assumption (H0) we obtain
5Lg
2
A slight change in the end of proof of Proposition 5 shows that the condition (b)

of Lemma 2 is satisfied. The existence of a fixed point z; € B, (z*) for the map
1o is ensured. This finishes the proof of Proposition 6. O

| Zo(z) I < 82 (3.25)

Proof of Theorem 3. Keeping 79 = z* and setting r :=r, = C || 2* — 21 ||?,
the application of Proposition 5 and Proposition 6 to the map ¢ and vy, respectively
gives the existence of a fixed points yx and zpy1 for ¢x and vy respectively which
is an elements of B, (z*). This last fact implies the inequality (3.9), which is the
desired conclusion. O

Remark 7. (a) It follows from the proof of Proposition 5 that constants Cy and dg
can be replaced by the more precise

Co = @, (3.26)
2

and

%zmin{a,wlz]—%;—lz , é}, (3.27)
respectively. Note that

Co < Co, (3.28)

and
8o < 8. (3.29)

(b) The constant Jp in the proof of Proposition (6) can be given by :

ﬁ:min{a,,/%,éJ} (3.30)

Indeed by adding and substracting VF(z*) (z* — yo) inside the first norm in the
computation of || Zo(z*) || we arrive at an estimate corresponding (3.23) :

I Zo(z*) | < == Nlzo—az"|*. (3.31)

Henceg can be replace &g in the proof of Proposition 6. This modification is usefull

when & > dy. These observations are important in computational mathematics
since the allow a smaller ratio C and a larger radius of convergence [3], [4].
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Remark 8. The sequence (y,) given by algorithm (1.2) is also quadratically conver-
gent to a solution z* of (1.1) (see [9]). Note that the midpoint method for nonlinear
equations was shown by us to be of order three (see [1]-[5], [7], [8]). However we
had to introduce Lipschitz conditions on the second Fréchet derivative V2F. Here
we simply used hypotheses on VF only. In a future paper using the Ostrowski
representation for F given in [8] we will recover the third order of convergence of
method (1.2).

Application 9. (see [14])

Let K be a convex set in IR", P is a topological space and ¢ is a function from
P x K to R"™, the "perturbed” variational inequality problem consists of seeking
ko in K such that

For each k € K, (@o(p,ko);k—ko) > 0 (3.32)

where (.;.) is the usual scalar product on R™ and p is fixed parameter in P. Let
Tk be a convex indicator function of K and 0 denotes the subdifferential operator.
Then the problem (3.32) is equivalent to problem

0 € o(p, ko) + 0Tk (ko). (3.33)

The problem (3.32) is equivalent to (3.33) which is a generalized equation in the
form (1.1). Consequently, we can approximate the solution kq of (3.32) using our
methods (1.2) and (3.10).
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1. INTRODUCTION

Sostak [19] introduced the fundamental concept of a fuzzy topological structure
as an extension of both crisp topology and Chang fuzzy topology [5]. Later on he
has developed the theory of fuzzy topological spaces in [20, 21]. In [16], Ramadan
gave a similar definition, namely ”smooth topological space”. It has been developed
in many direction [6,10-14]. '

71
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As a generalization of fuzzy sets, the notion of intuitionistic fuzzy sets was in-
troduced by Atanassov [2-4]. Recently, Coker and his colleagues [8, 9] introduced
the notion of intuitionistic fuzzy topological space using intuitionistic fuzzy sets.
Samanta and Mondal [17, 18] introduced the notion of intuitionistic gradation of
openness as a generalization of intuitionistic fuzzy topological spaces [9] and smooth
topological spaces.

In this paper, we will prove the existence of final intuitionistic fuzzy topological
spaces and final intuitionistic fuzzy closure spaces. From this fact, we will define
intuitionistic quotient spaces of their spaces. Moreover, the additivity of two kinds
of intuitionistic fuzzy closure spaces are studied.

Throughout this paper, let X be a nonempty set, I = [0,1], I, = (0,1] and
I, =[0,1). For o« € I, @(z) = a for all zx € X. The family of all fuzzy sets on
X denoted by IX. Notions and notations not described in this paper are standard
and usual.

2. INTUITIONISTIC FUzzy TOPOLOGICAL SPACES

Definition 1. [18] An intuitionistic gradation of openness (IGO, for short) on X
is an ordered pair (7, 7#) of functions from I¥ to I such that:
(IGO1): 7(X\) +7(A) < 1, for each \ € IX,
(IGO2): 7(0)=7(1) =1, 7*(0) = m*(1) = O
(IGO3): 7(A1 AAXg) = T(M) AT(A2) and 7(A1 A Aa) < 7#(A1) V 7x(A2), for
each \; € I and i € {1,2},
(IGO4): 7(Vica M) = Njea 7(Na) and 7x(V;ca X)) < Viea T#(Ns), for each
family {\; € IX|i € A}

The triplet (X, 7, 7%) is called an intuitionistic fuzzy topological space (ifts, for
short). 7 and 7+ may be interpreted as gradation of openness and gradation of
nonopenness, respectively. Let (71, 7%1) and (72,7%3) be IGO’s on X. We say
(71, 7#1) is finer than (7o, T*9) ((T2,7*2) is coarser than (11, 7%1)) if 72(A) < 71(A)
and T#9(\) > 7#;(A) for all A € IX.

Definition 2 ([18]). Let (7, 7%) be an IGO on X and the functions F, F* : I+ — I
defined by F(u) = 7(1 — p) and F*(u) = 7% (1 — p) for all u € IX. Then (]—' F)
is called an intuitionistic gradation of closedness (IGC, for short) on X.

Definition 3 ([15]). A function C : I* x I, x I} — I is called an intuitionistic
fuzzy closure operator if for each A\, u € IX, r € I, and s € I} with r 4+ s < 1, the
operator C satisfies the following conditions:

1) C(0,r,s) = 0.
C2) A<C(A,1,9).
C3) if A < p, then C(A, 7, 8) < C(p, 1, s).
C4) C(A\,r,8) VC( 1y, 8) =C(AV p, 7, 8).
(C5) C(A, 7, 9) 'g C(A,r1,8) ifr <r;and s > s; with r; + 57 < 1.

(C
(C2)
(C3)
(C4)
)
The pair (X,C) is called an intuitionistic fuzzy closure space. An intuitionistic

fuzzy closure space (X,C) is called topological if
~(C6) C(C(A,,8),7,8) =C(\,1,8), foreach A€ IX and r € I,, s € [; withr+s < 1.
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Let C; and Cq be intuitionistic intuitionistic fuzzy closure operators on X. We say
that C; is finer than Cy (Cq is coarser than C;) iff C1()\, 7, 5) < Ca(A,1,s), for each
AeIX andrel,, se€l; withr+s<1.

Theorem 4 ([15]). Let (X, 7,7*) be an ifts. Then for eachr € I,, s€ I;, A € IX
we define an operator C, ry : I* x I, x I — IX as follows

Crre(A,1,8) = /\{1u er” | A<, 7(1—p) 27, 7%(1 - p) < s}
Then Cr 1. is an intuitionistic fuzzy closure operator.

Theorem 5 ([15]). Let (X,C) be an intuitionistic fuzzy closure space. Define the
functions ¢, T*c : IX =T by

e =\/{reL |[Cl-Ars)=1-2)}

()= \{s€ L |CL-\rs)=1-A}L

Then:
(1) (1e,m*¢) is an IGO on X.
(2) We have C = Crp rvp ff (X,C) satisfies the following conditions:

(a) It is a topological intuitionistic fuzzy closure space.

() Ifri =\{rel, |C(\r,s) =A} and s1 = N{s € I | C(A\,r,s) = A}, then
C(/\, 1, 81) =A.
Definition 6 ([15]). Let (X, 71, 7*1) and (Y, 72, 7*2) be ifts’s. A function f :
X — Y is called an intuitionistic fuzzy continuous if 7;(f~1(x)) > 72(1) and
x1(fH (1)) < Txo(u) for all p € IY. Equivalently, Fi(f~!(n)) > Fo(u) and
Fr(f~Hw) < F5 () for all pe I7.
Definition 7 ([1]). Let (X,C;) and (Y, Cy) be two intuitionistic fuzzy closure spaces.
A function f : (X,C;) — (Y,Co) is said to be a C-map if for all A € IX, r € I,
sel, withr +s<1,

. (& (A7, s)) < Cz(f(/\),r, s).-

Theorem 8 ([1)). Let (X, 11, 7*1) and (Y, T2, T*2) be ifts’s. A function
fi(X,m,7m%1) = (Y, 79, T*2) is an intuitionistic fuzzy continuous iff
f : (X’CTI,T*I) - (KCT2,T*2) s a C-map.
Using Theorem 8, we can easily prove the following corollary:
Corollary 9 ([1]). Let (X,C1) and (Y,Cq) be intuitionistic fuzzy closure spaces.
If f:(X,C1) — (Y,C2) is C-map, then f : (X,Tc,,T5) — (Y,7c,,7¢,) is an
intuitionistic fuzzy continuous map.
Definition 10. An intuitionistic fuzzy topological property £ is called an additive,
if for any family of intuitionistic fuzzy topological spaces {(X;, Ti, 7#;) }ier with
property &, then the sum (X, 7, 7#) also has property &

Definition 11. An intuitionistic fuzzy closure space (X, C) is said to be:

(r, 8)-fuzzy-Ty: If for all z, y € X such that z # y, there exists A € IX such that
C(A,rs) =X and A(z) # A(y),where r € I, s € 5.

(r, 8)-fuzzy-T1: If C(x(z},7,5) < X{a}, for each z € X, where r € I, s € S; and
X{z} is the characteristic function of z.
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3. FiNaAL INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

Theorem 12. Let Y be a set and {(X;, 7, 7)) hier be a family of intuitionistic
fuzzy topological spaces. Let f;: X; — Y be a function for each i € T'. Define the
functions T,7x: I¥ — I by
) = ARUT ), m0) =V ma(7H ).
iel’ i€l

Then:

(1) (7, 7%) 1s the finest intuitionistic fuzzy topology on'Y for which each f; is intu-
stionistic fuzzy continuous.

(2) f: (Y,7,7%) > (Z,72,T*z) is an intuitionistic fuzzy continuous map iff each

fofi: (X, ™) = (Z,77,7+z) is intuitionistic fuzzy continuous.

Proof. (1) (IGO1) and (IGO2) are trivial from the definition of T, 7.

(IGO3)
TAAE) = 7wV A ST W)
> (7O AT ()
> (A AT().
and
mAAE) = (AT ()

S m(fTT )V TR (1))
< mx(A) V TR(p),

which is a contradiction. Hence 7(AA p) > 7(A) A1(p), T#(AA ) < 7x(A) V 7x(p).

(IGO4) We will try to prove that 7(\/,r As) > Vier 7(As), T#(Vier As) < Vier 7#(X).

Suppose T(V;cr A) Z Vier () and 7#(V;cp Ai) £ Viep 7#(As). From the defini-
tion of (7, 7), there exists ¢ € I" such that

(V) <n(FH OV ) < V()
i€l i€l ier
and

T*(\/ Ai) > T*i(f_l(\/ X)) > \/ (). ‘
S el i€l
But, we have

n(TH VM) = (V)

i€l iel
> /()
i€l
> \/ ().
i€l

and
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(VA = eV f

i€l ; 161"
< \/ (s 1(M)
el ,
SI \/T*(/\z),
el

which is a contradiction. Hence T(\/ 1ﬂ/\z) > Vier 7(A), %*(Vzer ) < Vzer 7-*(/\ )
for any family {\; | i € I‘} crv.

Secondly, since T{A) < Tz(f L) and T*(/\) > TH; ( f71(\) for each i € T, each f;
is intuitionistic fuzzy continuous map. : = e L

Finally, we will show that (7,7%) is the finest intuitionistic fuzzy topology on Y
for which each f; is intuitionistic fuzzy continuous map. If f;: (X;, 7, 7%;) —
(Y, 7*,7+*) is intuitionistic fuzzy continuous, we have 7*(v)’ < *(f71(v)) and
(V) > T#:(f71(v)), for each i € T, v € IY. By using the définition of T, TH, 1t
follows 7*(v) S T(v ) and 7+*(v) > 7+(v) for all v € IY

(2) (= .) Trivial.

(« .) Since fof;: (X, 7, 7%;) — (Z,72,7xz) is an intuitionistic: fuzzy continuous,
we have for each p € IZ, S

7z() < mi((fofi) T W) = T(fH (ST W)
and ‘
Taz(p) 2 Txi((fofi)TH(w)) = T (7 (T (W))).
By using the definition of 7, 7%, it follows 7z(u) < 7(f~*(u)) and T*z(u) >
7#(f~1(u)) for each u € I2. Hence f: (Y,7,7%) — (Z,7z,7+z) is intuitionistic
fuzzy continuous map.
(]

Definition 13. The structure (7, 7*) defined in Theorem 12 is called the final
intuitionistic fuzzy topology on Y associated with the families {(Xi,7;, 7#;)}ier
and (fi)ser.

Corollary 14. ( Sum Intuitionistic fuzzy topological spaces )

Let {(X;, 75, T*;) bier be a family of intuitionistic fuzzy topological spaces, for differ-
ent i,j €. X; and X be disjoint, X = U;erX;. Letid;: X; — X be the identity
map for which i € T'. Define functions 7,7%: IY — I by

T(\) = /\Tz(zd L), \/T* (id; 1 ().
i€l i€l
Then:
(1) (1,7%) is the finest intuitionistic fuzzy topology on X for which each id; is
intuitionistic fuzzy continuous.
(2) f: (X, 7,7%) = (Z,72,7*z) is an intustionistic fuzzy continuous map iff each
foid;: (X, 7, m*;) — (Z,72,7T*z) 13 intuitionistic fuzzy continuous map.
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Corollary 15. Let Y be a set and (X, 7,7%) be an intuitionistic fuzzy topological
space. Let f: X — Y be a surjective function. Define the functions ¥, 7+5: IV — I
by

T =7(f71 ), T (A) = 7x(F71 (V)
Then.:

(1) (15, 7%) is the finest intuitionistic fuzzy topology on X which f is intuitionistic
fuzzy continuous.

(2) g: (Y, 75, 7+F) = (Z,77,7*z) is an intuitionistic fuzzy continuous iff
gof: (X,7,7%) — (Z,7Tz,Txz) is intuitionistic fuzzy continuous.

Definition 16. Let (X, 7,7*) be an intuitionistic fuzzy topological space and Y
a set. Let f: X — Y be a surjective function. The final intuitionistic fuzzy
topological spaces 7¥ on Yassociated the (X,7,7+) and f is called the quotient
intuitionistic fuzzy topological space and the function f is called fuzzy quotient
map.

Theorem 17. Let (X, 11,7x1) and (Y, 72, T*2) be intuitionistic fuzzy topological
spaces. Let f: (X, m1,7%1) — (Y, T2, 7%2) is a surjective intuitionistic fuzzy contin-
uous function .

(1) If f is an intuitionistic open function, then f is intuitionistic fuzzy quotient
Sfunction. _

(2) If f is an intuitionistic closed function, then f is intuitionistic fuzzy quotient
SJunction.

Proof. we only show that 7 = 7. By using Corollary 15 , we have 7()\) < 7/())
and Txa(A) > xf (A) for all A € IY. Conversely, we have

7 (A)

I

(/7))
n(f(F7 )
. TQ(A).

IN

and

7+l (A) T (71 (N)

T (F(F (V)
Tkg(A). ‘
(2) Trivial. o 0O

Y

4. FINAL INTUITIONISTIC FUZZYy CLOSURE SPACES

Theorem 18. Let Y be a set and {(X;,C;)}ier be a family of intuitionistic fuzzy
closure spaces. Let f;: X; —» Y be a surjective functzon for each i € T'. Define the
function C: IY x I, x I, — IY by

(A7, 8) \/fz i A), 7, 8)).

el
Then:

(1) C is the ﬁnest intuitionistic fuzzy closure operator 0N Y for which each f; is
C-map. AN
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(2) f: (Y,C) > (Z,Cz) is a C-map iff each fofi: (X,C;) — (Z,Cz) is C-map.

Proof. (1) Firstly, we will show that C is intuitionistic fuzzy closure operator on Y.
(C1), (C3) and (C4) are easily proved from the definition of C. For (C2) we have

C(\r,8) = \/ fi(Ci(fi_l()\),r, 5))
i€l

FilCs(f7H (M), 5))
L(f7H ) = A

2
2

Secondly, we have

C(fi(N),m8) = \/fi(ci(fi—l(A),r,s>>
FiC(F71 (N, 9))
Fi(Ci(X, 7, 8)).

VANV

Hence f;: (X;,C;) — (Y, C) is C-map.

Finally, we will show that C is the finest intuitionistic fuzzy closure operator on Y’
for which each f; is C-map. If f;: (X;,C;) — (Y,C*) is C-map for each i € T, then
we have, for each \; € IXi and r € I,, s € T1, fi(Ci(N\i,7,8)) < C*(fi(\i),m,8). Tt
follows that

chrs) =\ £ N),m9)
i€l - :
< \/C*(fi(fi_l()\)vr’s))
€l

= C*(\1ys).

(2) (=). Trivial.

(<). Let fof;: (X;,C;) — (Z,Cz) be C-map, then we have
(fofi)(Ci(Ai,1,8) < Cz(fofi(Ni),T,8)

It follows that

fenrs) = f(_\/fi(Ci(ffl(A)ﬂw))))
= \/f(fi(ci<fi—1(A>,r,s>>)
VCz(f(fi(fi_l(A))),r,S)

Cz(f(N),r8).

IA

From Theorem 18, we can state the following definition.
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Definition 19. The structure C is called the final intuitionistic fuzzy closure op-
erator on Y associated the families {(X;,C;)} and (f;):er.

Corollary 20. (Sum intuitionistic fuzzy closure spaces) Let {(X;,C;)}ier be
a family of intuitionistic fuzzy closure spaces, for different i, j € I', X; and X; be
disjoint, X = UzerX;. Letid: X; — X be the identily map for each i € I'. Define
the function C: I* x I, x I} — IX by

C(A,r,s) =\ idi(Ci(id;* (N), T, 9)).

iel '

Then: '
(1) C is the finest intuitionistic fuzzy closure operator on X fof ‘which each id; is
C-map.

(2) f: (Y,C) = (Z,Cz) is a C-map iff each foid;: (X,C;) — (Z,Cz) is C-map.

Definition 21. Let (X, C) be an intuitionistic fuzzy closure space and Y a set. Let

f: X — Y be a surjective function. Define the function C¥: IV x I, x I — IY by
CI(Ary8) = FC(S M),y 9))-

The (Y,CF) induced by f is called the intuitionistic fuzzy quotient space of (X,C)

and the function f is called an intuitionistic fuzzy quotient map.

Theorem 22. Let Y be a set and {(X;, 7, 7*;) }ier be a family of intuitionistic
fuzzy topological spaces. let f: X; — Y be surjective function for each i € T
and {(X;,Cr, r+;) Yier @ family of intuitionistic fuzzy closure spaces induced by
{(Xi,Ti,7*;) }ser. Define the functions T and 7 on'Y as Theorem 18 and the
function C: IV x I, x I — IV by

COAr,8) =\ filCrirni (£ (N),7,8)).
iel’
Then:
(1) C is finer than Cr . induced by (7, 7).
(2) (TCvT*C) = (T’ T*)'

Proof. (1) Since f;: (X, 7;,7x;) — (Y, 7,7x) is intuitionistic fuzzy continuous for
each i € ', by Theorem 8, f;: (X;,Cr, r+,) — (Y,Crrs) is & C-map for each 7 € T.
From Theorem 18, C is finer than C; r..

(2) First, we will show that for each ¢ € T, f;: (Xs, 74, 7%;) — (Y, 7¢,7*¢) is in-
tuitionistic fuzzy continuous. Suppose there exists A € IY such that Txc(A\) £
m;(f71(N) and 7e(N) £ 7(f7*()). Then there exists r, € Io, 5, € I with
C(L—A,rs) = 1 — X such that 7#¢(A) > ro > 7x(f7 (X)) and 7e(A) < 80 <
7:(f71(X)). On the other hand, we have

l—A - C(l—k,’f‘,é‘)
= \/ fi(Cﬂ.)T*i (f,b_l(l - A)’7'7 8))

el
2 fz_l(cl(l - fi_l(’\)”ro’ 30)'
It implies
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=X

fi_l(fi(c'r"r*(l - fi_l(A)7TOa So)))
CTi,T*i(fi_l(/\)arm so)'

But we have Cr, ., (f7 1 (A),70,50) = f;'(A). Since Tc,, = T and Txc ., = Tx;,

we have 7;(f71(\)) > 7o and 7#;(f7 (X)) < so, which is a contradiction. Hence
fi: (Xiy 1, 7)) = (Y, 7¢c, T*¢) is intuitionistic fuzzy continuous.

=
)

~~
>

-
It

>
>

Secondly, since (r,7x*) is the final intuitionistic fuzzy topology on Y, by Theorem
12, we have 7¢(A) < 7()\) and 7#¢c(X\) > 7+(A) for all A € IY. Conversely, since
7¢... = 7 and Txc__ = T, we only show that 7¢__ (A) < 7¢(}) for all A € IV,
Suppose there exists A € IY such that ¢, ., (A) # 7¢(A) and Tx¢_, (A) £ Txc(N).
Then there exist ro € I, 5o € I) with C,-.(1 — A\, 75,8) = 1 — A such that
T, . (A) 270 > 1c(A) and ¢, (A) < 86 < T#¢(A). On the other hand, we have

1-X= CT,T*(_l_ = A T07so) > C(l_ /\,roaso)-

Hence C(1 — Aj70,80) = 1 — A So, 7¢(A) > ro and 7x¢(A) < so, which is a
contradiction. O

Example 23. Let X = {a,b}, Y = {2} be sets. Define 7,7%: IX — I as follows:

Lo ifa=1—agso0rl—bgr;
) = , : 1 . 4 el
T( ) ‘ %’ Zf/\:l_(a0.5Vb0-7);
0, otherwise.
0, ifA=10;
L ifx=1—-ags0rl—bor;
T*(A) = %, fA=1 —‘(00.5 V bo.7);
1, otherwise.

From Theorem 4, we obtain
Cropw : IX x I, x I — IX as follows:

0, ifA=0,rel,, s €l
a0, fO#N<ags 0<r<3,3<s<1
Crre(Ary ) = bo.7, ifQ#/\Sbo.7,0<TS§,§<SS1;
TR ags Vbor, ifA<agsVbor, A Lags, AL bor,
0<r<i,2<s<l
1, otherwise.

From Corollary 15, we have the quotient space 77, 7%/ on Y of (X, 7,7%) as
follows:

1, #fv=01,
0, otherwise.

0, fv=01,
1, otherwise.

o () = r(f ) = {

From Theorem 4, we have
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_ Qa ify:Q,’r‘eIo,SeIla
C‘rf,T*f (V’ Ty S) - { 1, otherwise.

Since Cf(v,r,5) = f(c.,-7.,-*(f_1(l/),’r‘, s)) from Theorem 22, we have

0, ifv=0,rel, scl,
Cfv,r,s) =% mor if0#v<zo50<r<3 2<s<
1, otherwise.

Hence Cy is finer than C.s ;s and C,s .5 # CI. Moreover, C/ is topological
from Theorem 4. Since

11 11,11

PR Cfcf Y9t al/tala :1)

5 3) A0 (@05, 355 3)

an intuitionistic fuzzy closure operator Cf is not topological. From Theorem 5, we
have

zo.7 = Cf (20 5,

|1, ofv=0,orl; [0, ifv=0, orl;
Tes(v) = { 0, otherwise. ! Tes (V) = { 1, otherwise..

Hence (1¢5,7x¢s) = (14, 77).

Theorem 24. Let {(X;,C;)}ier be a family of pairwise disjoint (r,s)-fuzzy-Ty in-
tuitionistic fuzzy closure spaces. Then their sum intuitionistic fuzzy closure space
(X,C) is also (r, 8)-fuzzy-T.

Proof. (1) z,y € X, i € I. Since (X;,C;) is (r,s) — Tp, there exists A € %+ such
that C;(\, 7, s) = A and A(z) # A(y), since A € IX. By using corollary 20, we have
C(A, 7 8)=A

(2) r € X; and y € X;, 4,5 €T, i # 5. Let A € I*, it can be easily checked that
C(\,r,8) = A such that A(z) # A(y), where C;(A,r,s) = A. Hence the sum (X,C) is
(r, 5)-fuzzy-Tp. O

Theorem 25. Let {(X;,C;)}icr be a family of pairwise disjoint (r, s)-fuzzy-T, in-
tuitionistic fuzzy closure spaces. Then their sum intuitionistic fuzzy closure space
(X,C) is also (1, s)-fuzzy-T1.

Proof. Let £ € X = UX;, then z € X, for some i, € I But (X;,,C;,) is
(r, 8)-fuzzy-To, Cio(X{z}>78) < X{z}- Since xyq) € I*. By using Corollary 20,
C{X{z}>7>8) < X{z}- Hence the sum (X,C) is (r, s)-fuzzy-T} space. O
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Abstract. The purpose of this research is to investigate the influ-
ence of rotational speed and rotational direction of stirrer on the
hydrodynamics and compare behavior against previously simulated
numerical results in the dissolution vessel with fixed stirrer. The
numerical simulation of two-dimensional incompressible complex
flows of Newtonian fluid passed a stationary and rotating single
stirrer within a cylindrical vessel is presented. The context is one,
relevant to the food industry, of mixing fluid within a cylindrical
vessel, where stirrer is located on the lid of the vessel eccentrically
configured. Here, the motion is considered as driven by the ro-
tation of the outer vessel wall, with various rotational speeds of
vessel and stirrer. The numerical method adopted is based on a fi-
nite element semi-implicit time-stepping Taylor-Galerkin /pressure-
correction scheme, posed in a cylindrical polar coordinate system.
Numerical solutions are sought for Newtonian fluid. Variation with
increasing speed of vessel, change in speed of stirrer and change in
rotational direction of stirrer in mixer geometry are analysed, with
respect to the flow structure and pressure drop.

Key Words: Numerical Simulation, Finite Element Method, Mixing Flows, New-
tonian Fluids, Rotating Flow, Co-rotating Stirrer, Contra-rotating Stirrer.

1. INTRODUCTION

The rotational mixing in stirred vessel for the optimal design is of industrial
importance, usually industrial problems are much harder to tackle, particularly
in the field of chemical process applications, such as powder mixing processes [1],
granular mixing, mixing of paper pulp in paper industry, mixing of dough in a food
processing industry [2, 3] and many other industrial processes. In many mixing

83
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processes the complicating factors are the use of the fluids which exhibits very
complex rheological behavior, the use of agitators with stirrer in fact that the
agitator may be operated in the transitional regime and the direction of rotational
speed of stirrer. The present problem is one of this form, expressed as the flow
between an outer rotating cylindrical vessel wall and a single stationary and rotating
cylindrical stirrer in both co-rotating and contra-rotating directions. Stirrer is
located on the mixing vessel lid, and placed in an eccentric position with respect to
the central cylindrical axis of the vessel. Under two-dimensional assumptions, the
vessel essentially is considered to have infinite height. Elsewhere, the finite vessel
problem in three-dimensions [3]-[7] has been analysed. In two-dimension, similar
problem is also investigated with different number and shapes of stirrers [8, 9].
The motivation for this work is to advance fundamental technology modelling of
the dough kneading with the ultimate aim to predict the optimal design of dough
mixers themselves, hence, leading to efficient dough processing.

This problem has similarity to the classical journal bearing problem, associated
with lubrication theory, involving a degree of eccentricity between outer and inner
cylinders. The journal bearing problem has been solved for viscoelastic fluids em-
ploying finite element methods [10, 11] and spectral element methods [12]. Dris
and Shagfeh [10, 11] with finite elements, observed purely elastic flow instabilities
in eccentric cylinder flow geometries. The velocity profiles vary as a function of
eccentricity, azimuthal coordinate, and the ratio of cylindrical rotation rates. The
local flow dynamics span over the entire range of flows from Taylor-Couette flow
to Dean flow. The onset of flow instabilities has been shown to be the result of
non-local effects in the flow [10]. Global effects drastically alter the hoop stresses
in the base flow.

The present study adopts a semi-implicit Taylor-Galerkin/Pressure-Correction
(TGPC) finite element time-marching scheme, which has been developed and re-
fined over the last two decades. This scheme, initially conceived in sequential form,
is appropriate for the simulation of incompressible Newtonian flows [14]-[17].

In Section 2, the complete problem is specified and the governing equations are
described in Section 3. This is followed, in Section 4, by an outline of the TGCP
numerical method employed for the simulations. Simulation results are presented
in Section 5 and our conclusions are drawn in Section 6.

2. PROBLEM SPECIFICATION

The problem investigated here is two-dimensional mixing flows of Newtonian
fluids, of relevance to the food industry such as occurs in dough kneading. Such
flows are rotating, driven by the rotation of the outer containing cylindrical-shaped
vessel. The stirrer is held in place by being attached to the lid of the vessel. In
reality, within the industrial process, the lid of the vessel would rotate with stirrer
attached. With a single stirrer, an eccentric configuration is adopted.

Initially, the problem is analysed for rotating flow between stationary stirrer
in rotating cylindrical vessel, to validate the finite element discretisation in this
cylindrical polar co-ordinate system to compare the numerical results against results
obtained in previous investigations 7, 8]. Subsequently, two alternative rotational
directions (Co-rotating and contra-rotating) of stirrer are investigated in a rotating
cylindrical vessel. Throughout Newtonian fluid is considered.
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FiGURE 1. Eccentric rotating cylinder flow, with one stationary
and rotating stirrer; Domain and finite element mesh

Domain and finite element mesh for the problem involved is displayed in Figure-
1. In pervious investigations [7, 8], for mesh convergence studies, three meshes were
generated, adopting a hierarchical mesh refinement technique. In this technique,
each parent element of the coarser mesh is divided into four child elements. Between
- the solutions of any variakle on two consecutive refined meshes, a discrepancy of
order one percent tolerance was fixed. Due to enhancement in power of computation
and based on pervious findings, the refined mesh M3 [7] is reasonably adoption for
smooth and accurate solutions. The total number of elements, nodes and degrees-
of-freedom are 3840, 7840 and 17680 respectively.

To provide a well-posed specification for each flow problem, it is necessary to pre-
scribe appropriate initial and boundary conditions. Simulations commence from a
quiescent initial state. Boundary conditions are taken as follows. For stationary
stirrer the fluid may stick to the solid surfaces, so that the components of velocity
vanish on the solid inner stirrer sections of the boundary (v, = 0 and vy = 0). For
non-stationary stirrer, fixed constant velocity boundary conditions are applied. For
co-rotating stirrer, vanishing radial velocity component (v, = 0) is fixed and for
azimuthal velocity component is fixed with three different non-dimensional speeds
(vg = 0.5, 1 and 2 unit). Similarly, for contra-rotating stirrer only azimuthal ve-
locity component is changed and fixed in reverse direction (i.e., vg = —0.5, —1 and
—2 unit). On the outer rotating cylinder vessel a fixed constant velocity boundary
condition is applied (v, = 0 and vy = 1 unit), and a pressure level is specified
as zero for both co-rotating and contra-rotating stirrer on vessel wall. For stream
function, outer cylinder is fixed zero and at inner stirrer is left unconstrained, being
solutions on closed streamlines.

3. GOVERNING SYSTEM OF EQUATIONS

The two-dimensional isothermal flow of incompressible Newtonian fluid can be
modelled through a system comprising of the generalised momentum transport
and conservation of mass equations. The coordinate reference frame is a two- -
dimensional cylindrical coordinate system taken over domain 2. In the absence of
body forces, the system of equations can be represented through the conservation
of mass equation, as,

V-u=0, (3.1)



86 A. Baloch, M. A. Solangi and G. M. Memon

the conservation of momentum transport equation, as,

du

pazv-a—pu-Vu, (3.2)

where, u is the fluid velocity vector field, o is the Cauchy stress tensor, p is the
fluid density, ¢ represents time and V the spatial differential operator. The Cauchy

stress tensor can be expressed in the form:
c=-pi+T, (3.3)

where p is the isotropic fluid pressure, ¢ is the Kronecker delta tensor, whilst T
is the total stress tensor. For constant viscosity (u) Newtonian fluids, the stress
tensor T is given as

T = 2ud, (3.4)

where the rate-of-strain tensor d = 2[Vu + (Vu)'], and 1 represents the transpose
operator.
Relevant non-dimensional Reynolds number is defined as:
_ pVR

Re , 3.5
He (35)

The characteristic velocity V. is taken to be the speed of the vessel, the charac-
teristic length scale is the radius, R, of a stirrer and the characteristic viscosity p.
is the zero shear-rate viscosity.

Appropriate scaling in each variable takes the form. At a characteristic rota-
tional speed 50 rpm and zero shear viscosity of 105 Pa s, scaling yields dimensional
variables p = 2444p+.

4. NUMERICAL METHOD

As stated earlier, a time-marching finite element algorithm is employed in this in-
vestigation to compute numerical solutions through a semi-implicit Taylor-Galerkin
/pressure-correction scheme [15], [21], [16]-[18], based on a fractional-step formu-
lation. This involves discretisation, first in the temporal domain, adopting a Tay-
lor series expansion in time and a pressure-correction operator-split, to built a
second-order time-stepping scheme. Spatial discretisation is achieved via Galerkin
approximation for the both momentum and stress constitutive equations. The fi-
nite element basis functions employed are quadratic (¢;) for velocities, and linear
(vx) for pressure. Corresponding integrals are evaluated by a seven point Gauss
quadrature rule.

Stage la:
2M S L 2
oy i \/rn-i-2 _ rn — tpn _ Hc n
[ At + 2R€]( v ) Lr P Re {Srrvr + S’re‘/e}
- ANV)V, — N1 (Vp)Ve}"
2M S n+-§— n _ t pn He T n
[At + 2Re (Vo Vo) = L¢'P"— E{Srgvr + SooVo}

- AN(V)Vs — N1 (Vo) V2 }"
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Stage 1b:
2M S 7
s oD Vr*_vrn = rT mo LS rrVr T ™
A Tl ) = LAPt = EE{S, Ve + SeeVi)
- AN(V)V, — M (Vp)Vi}" 2 -
2M " . .
&+ ](Va — V") = LytPr— %{sjevr + SgeVi}
~ {N(V)Vs — Mi(Vp)V; )"+
Stage 2:
0 KQ”%1 = LLV*
At ’
Stage 3:

ntl _ 7%\ — _g.To" !
At M(U U*) = -6L'Q""",
where V™ are the nodal velocity vector at time t", respectively; Vx is an interme-
diate non-divergence-free velocity vector, V**! is a divergence-free velocity vector
at time step t"+!. P™ is a pressure vector and Q*"! = P"t! - P" is a pressure
difference vector. M is a mass matrix, N(V) is a convection matrix, K is'a pressure
stiffness matrix, L is a divergence/pressure gradient matrix and S is a momentum
diffusion matrix. Utilising implied inner product notation < . > for domain inte-
grals, the above system involves matrices of the form:

Mass matrix:
M = / (,Z&ﬂl&j?“dﬂ,
Q
Non-linear advection matrices:

laqu GV} 89,
/ ¢i(diV, kak aeJ YrdQ,

and
N3 (Vo) = / ¢i¢lV9l¢jrd,Q, where 1,5, =1,...,6
0

Pressure stiffness matrix:

Kim = / VYV, rdQd, where k,m =1,2,3,
Q

Pressure gradient matrix:

Lmlz/l/)qu%’l“dg
Q

Srr S’r@
S = ,
(Slo 500>

Momentum diffusion matrices:
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where t is transpose of the matrix and

_ 0¢:i 0¢; | 2¢:id; 1 0¢;0¢;
Sy = /9(2 ar or + (e Rr)2 + (R )2 00 00 )rdQ
I 0008 20 04 1 04
S /Q(d)kRk 80 Or  (gnFi)® 00  (4nRr)? 00 Pa)raf
Ses = 0¢i 0¢; $p; 1 0¢; 1 0¢;

q Or or ' (YxRi)?  YrRk ' Or xRy Or 7
_ 2 09id¢;
(YxRi)? 00 00

Repeated indices imply summation, taken over i, j and [ for all velocity nodal
points, and k, m for all vertex pressure nodal points on the triangular meshes. F"
is a forcing function vector due to body force and boundary conditions at time
t,, (which vanishes here). To give the precise second-order form of the pressure-
correction algorithm the Crank-Nicolson coefficient § is taken as one half. Stage
one and three are governed by augmented mass matrices and solved by a Jacobi
iterative method that necessitates using only a small fixed number of mass itera-
tions, typically three. At stage two, a Poisson equation emerges, with a matrix that
is symmetric and positive definite. It possesses a banded structure, for which it is
appropriate to employ a direct Choleski method. The bandwidth may be optimised
by using an algorithm such as that of Sloan [23]. Here, n denotes the time step
index. Velocity components at the half time step n + % are computed in step la
from data gathered at level n and in step 1b an intermediate non-solenoidal velocity
field Vx is computed at the full time step, using the solutions at the level n and
n -+ % .

For pressure this leads naturally to a second step, where a Poisson equation is
solved for the pressure-difference from a non-solenoidal velocity field V* over the
full time step. Solving for temporal pressure-difference has some specific advantages
with respect to boundary conditions at the second step, see [15]. On a third and
final step, a solenoidal velocity is captured at the end of the time-step cycle, com-
puted from the pressure-difference field of step 2. For finite element approximation,
the generalised weighting function w; replaces ¢;, for the Galerkin formulation of
momentum equation. In general, the time-step, At, is taken as 1072, so as to sat-
isfy a local Courant Condition constraint [18]-[21] and a relative solution-increment
time-step termination tolerance of 107° is enforced. The implicit splitting of pres-
sure terms in the pressure correction leads to the factor 6, and a second-order
scheme if taken as % In addition, the Crank-Nicolson splitting of diffusion terms
at stage-1, incorporates the implicit diffusion contribution to the left-hand-side of
the equation.

+ Jrd§Q.

5. NUMERICAL RESULTS

The numerical results are investigated from two distinct points of view: changing
rotational speed and direction of stirrer. This leads to analysis with respect to
increasing viscosity levels (decrease of Reynolds number) and comparison of flow
structure and pressure variation across problem instances.

The predicted solutions are displayed for Newtonian fluid through contours plots
of streamlines, and pressure isobars. Pressure isobar patterns are plotted with
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eleven contours, from the minimum to maximum value, over a fixed range. Stream-
lines are plotted in two regions: first from the vessel wall to the stirrer perimeter,
seven contours are plotted (¥ =0, 0.5, 1.0, 1.5, 2.0, 2.5 and 2.95 units) and second
from the stirrer to the centre of the recirculation, 3.05 < ¥ < ¥,,... at increments
of 0.3 units. Comparative diagnostics may be derived accordingly.

Various increasing levels of zero-shear viscosities p. (characteristic) are consid-
ered, from which Reynolds number is computed, as defined above. For Reynolds
numbers of Re = 8.0, Re = 0.8 and Re = 0.08, the corresponding zero shear vis-
cosities are p, = 1.05 Pa s, p. = 10.5 Pa s and p. = 105.0 Pa s. Of these levels, a
range of material properties is covered from those for model fluids, to model dough,
to actual dough, respectively.

5.1. Flow Patterns and Pressure Differential for Stationary Stirrer with
Increasing Inertia. The effect of increasing Reynolds number upon streamline
patterns on left and pressure differential on right isobars are represented in contour
plots for stationary stirrer in figure-2. Computations are carried out at Re =
0.08, Re = 0.8 and Re = 8. At a low level of inertia, Re = 0.08, an intense
recirculating region forms in the centre of the vessel, parallel to the stirrer and
symmetrically intersecting the diameter that passes through the centres of the vessel
and stirrer. Flow structure remains unaffected as Reynolds number rises to values
of O(1); hence we suppress this data. However, upon increasing Reynolds number
up to eight, so O(10), inertia takes hold and the recirculation region twist and shifts
towards the upper-half plane, vortex intensity wanes and the vortex eye is pushed
towards the vessel wall. The flow becomes asymmetric as a consequence of the shift
in vortex core upwards. The diminishing trend in vortex intensity is tabulated in
Table-1.

TABLE 1. Vortex intensity for Newtonian fluids: (g, = 105, 10.5
and 1.05 Pas)

Problem Speed Re=0.08 Re=0.8 Re=8.0
Min. | Max. | Min. | Maz. | Min. | Mazx.
Stationary | Zero 0.00 | 5.091 | 0.00 | 5.087 | 0.00 | 4.852

Stirrer

Co- Double | 0.00 |10.259 | 0.00 | 10.294| 0.00 | 11.482
rotating Same | 0.00 | 7.295 | 0.00 | 7.299 | 0.00 | 7.299
stirrer Half 0.00 | 7.295 | 0.00 | 7.295 | 0.00 | 7.295

Contra- Double | -2.884 | 2.865 | -2.897 | 2.857 | -3.913 | 2.171
rotating Same 0.00 | 3.734 | 0.00 | 3.731 | 0.00 | 3.557
stirrer Half 0.00 | 4.340 | 0.00 | 4.340 | 0.00 | 4.160

Similar symmetry arguments apply across the geometry variants in pressure
differential, at Re = 0.08, symmetric pressure isobars appear with equal magnitude
in non-dimensional positive and negative extrema on the two sides (upper and
lower) of the stirrer in the narrow-gap. As inertia increases from Re = 0.8 to
Re = 8, asymmetric isobars are observed, with positive maximum on the top of the
stirrer and negative minimum at the outer stirrer tip (near the narrow-gap), see
also Table-2. :
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Asymmetrical flow structure is observed in all variables and across all instances
as inertia increase from Re = 0.08 to Re = 8.0, recirculating flow-rate decrease
by just five percent. In non-dimensional terms above Re = 0.08 (noting secale
differences), there is increase in pressure-differential rise by as much as twenty-two
percent, at Re = 8.0, whilst pressure differential increase on the lower part of the
stirrer. For Newtonian fluid, the extrema of recirculating region along with vortex
intensity and pressure differential, are tabulated for completeness in Tables (1 and
2} at all three Reynolds number values. . :

5.2. Flow Patterns And Pressure Differential For Co-Rotating Stirrer
With Increasing Inertia. Equivalent field kinematic data for co-rotating stirrer
with increasing Reynolds number from Re = 0.08 to Re = 8.0 is presented in
figure-3, to make direct comparisons across all instances for _Newtoniah fluids, with
particular reference to localised vortex intensity and pressure drops are tabulated
in Tables (1 and 2).

In figure-3(i), for co-rotating case, stream lines are shown for decreasing speed
of the stirrer (from left to right), double speed (left), same speed (centre) and
half speed (right), only single vortex is formed, in contrast to the contra rotating
case where three vortexes were formed, see figure 4(i). At Re = 0.08, doubling
the speed of the stirrer the vortex is formed near to the stirrer and is much more
circular and smooth in formation, but as the speed of the stirrer is reduced to
half the vortex moves away from the stirrer towards the right and the centre of
the vortex is circular on one side and on other side is suppressed, also showing an
increase space between the centre of vortex and diameter of secondary streamline:
Streamlines tend to increase in density at the edges of the stirrer. At Re = 0.8, the
centre of the recirculating region is shifted towards the lower-half of the plane. The
diameter of the vortex also increases and leaves no circulation of fluid in the centre
of recirculating region. At Re = 8.0, the shape of the vortex centre is changed and
further shifted towards the lower half of the plane. At the half speed of the stirrer
and Re = 8.0, the shape of the recirculating region is changed and vortex centre
amplifies in the size. Consequently, the fluid pushes towards vessel wall and create
vacuum in the centre of the vessel.

For co-rotating instances, figure-3(ii) illustrates the pressure differential at all
comparable parameter values. The pressure differentials are high and is about
five times in negative extrema compare to stationary stirrer, at Re = 8 and small
change is observed in positive maxima. Reducing the speed of stirrer from double
to single speed, the pressure differentials is very low and remain in order of two for
all inertial values. Subsequently, further reduction in the speed of stirrer to half
virtually no change in the pressure differential is observed and remain unaltered for
all Reynolds numbers values, see Table-2.

5.3. Flow Patterns and Pressure Differential for Contra-Rotating Stirrer
with Increasing Inertia. Corresponding field kinematics data for contra-rotating
stirrer situation-with increasing Reynolds number at Re = (0.08,0.8 and 8.0) the
streamline contours and pressure differentials are presented in figure-4(i and ii)
respectively. In figure-4(i), for contra-rotating case, streamlines are illustrated for
decreasing speed of the stirrer from double (left) to half (right) against the speed of
vessel the three vortices develops, two in the vicinity of stirrer, one in narrow gap
and other in middle of the vessel, and third in the centre of vessel away from stirrer
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TABLE 2. Pressure drop for Newtonian fluids: (e = 105, 10.5
and 1.05 Pas)

Problem Speed Re=0.08 Re=0.8 Re=8.0

Min. Mazx. Min. Mazx. Min. | Mazx.
Stationary | Zero -3.366 | 3.356 | -3.421 | 3.325 | -5.117 | 3.541

Stirrer

Co- - | Double | -5.234 | 4.916 | -6.734 | 3.987 | -26.117 | 4.924
rotating Same | -1.631 | 1.553 | -1.984 | 1.209 | -1.984 | 1.209
stirrer Half -1.984 | 1.209 | -1.984 | 1.209 | -1.984 | 1.209

Contra- Double | -11.578 | 11.380 | -12.479 | 10.498 | -28.358 | 6.906
rotating Same | -7.443 | 7.384 | -7.719 | 7.127 | -11.808 | 5.272
stirrer Half | -5.394 | 5372 | -5.394 | 5372 | -8.218 | 4.849

close to vessel wall. In the narrow gap, where stirrer spins in counter direction of
the vessel rotation, a small vortex appear with low vortex intensity, as the speed
of stirrer decrease this vortex strength up to fifty percent high at low Re = 0.08.
The augmentation in minima of vortex intensity is observed with increase in inertia,
however, it suppress in maxima of vortex intensity. As inertia takes hold the second
and third recirculation regions shifts the centres towards the upper-half plane of
the vessel. For all Reynolds number values at double speed of stirrer, the central
vortex rotate in counter direction against two other vortices. These recirculation
regions have different rotational direction which is very important phenomena in
homogenisation of the fluid.

For all three instances, comparable equilibrium influence apply across the geom-
etry variants in pressure differential, at Re = 0.08 and double rotational speed of
stirrer, symmetric pressure isobars appear with equal magnitude in non-dimensional
positive and negative extrema on both sides (upper and lower) of the stirrer in the
narrow-gap as shown in figure-4(ii). The associated values of pressure differentials
are tabulated in Table-2. As inertia increase from Re = 0.8 to Re = 8, asymmetric
isobars are observed, with positive maxima on the top of the stirrer and negative
minima at the outer stirrer tip (near the narrow-gap), see also Table-3. For the
contra-rotating instance, in contrast to co-rotating case, the pressure differentials
are some what symmetrical in geometry at maxima and minima at twice the speed
of stirrer and at half the speed of stirrer for both inertial values Re = 0.08 and
Re = 0.8. However, upon increasing Reynolds number up to eight, thus O(10), in-
ertia takes hold the pressure differentials are observed asymmetrical, increasing the
speed of the stirrer to double increases the pressure differentials more than twice
in negative minima and in contrast it decrease up to thirty five percent in positive
maxima. Comparing against co-rotating case at same double speed of stirrer in-
crease in minima is merely eight percent and increase in maxima is about thirty
percent.

6. CONCLUSIONS

The use of a numerical flow simulator as a prediction tool for this industrial
flow problem has been successfully demonstrated. We have been able to provide
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(a) Re = 0.08

(c) Re =80

FIGURE 2. Streamline contours and pressure isobars of stationary
stirrer with inereasing Reynolds number.

physically realistic simulations for this complex mixing process using Newtonian
fluid. \

Addressing the rotation of the single stirrer case against stationary stirrer case
in contra-rotating and co-rotating directions are being investigated with increasing
inertia. For stationary stirrer case, it is clearly demonstrated that with increasing
inertia fluid flow structure lose its symmetry and recirculating region move upwards
in the direction of vessel motion and non-dimensional pressure differential increases.
For co-rotating stirrer case, single recirculating region develops in the centre of the
vessel and fluid suppressed towards vessel wall and leave big vacuum in the centre of
the vessel. Whilst at twice the speed of stirrer pressure differentials are higher and
lower at lower speed of stirrer. In contrast to these cases, contra-rotating case flow
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(c) Re = 8.0
FIGURE 4(i). Streamline contours for co-rotating stirrer case with
: decreasing speed of the stirrer from left to right
(double (Vy = 2), same (Vp = 1) and half speed (Vp = 0.5))
against speed of vessel and increasing Reynolds number.

(a) Re = 0.08

< S “~==" () Re = 80
FIGURE 4(ii). Pressure isobars for co-rotating stirrer case with
decreasing speed of the stirrer from left to right
(double (Vy = 2), same (Vp = 1) and half speed (Vg = 0.5))
against speed of vessel and increasing Reynolds number.
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structure and pressure differential illustrates completely different picture. Instead of
single vortex three recirculating regions have been developed with different position
of vortex centres. The pressure differentials are generally higher, and similar balance
in extrema is noted to those flows. However, the position, in those negative maxima,
exceeds to positive minima by about four times. Through the predictive capability
generated, we shall be able to relate this to mixer design that will ultimately impact
upon the processing of dough products.

Promising future directions of this work are investigation of rotation of two stir-
rers case in co-rotating, contra-rotating and mixed rotating directions, changing
material properties using non-Newtonian fluids and introducing agitator in concen-
tric configured stirrer.
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We prove that every Jordan k-derivation of a 2-torsion free prime
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1. INTRODUCTION

Let M and I be two additive abelian groups. If there exists a mapping (a, a, b) —
aab of M x T x M — M satisfying the following for all a,b,c € M and o, 5 € T:
(a) (a + b)ac = aac + bac, a(a + B)b = aab + affb, aa(b+ ¢) = aab + aac and
(b) (acd)Be = aa(bfc),
then M is called a I'-ring. This definition is due to Barnes [1].

If, in addition to the above, there exists a mapping («, a, 5) — aaf of

I' x M x T — T satisfying the following for all a,b € M and «, 3,y € I':

(a*) (a + B)ay = aay + Bay, ala +b)f = aaf + abf, aa(B +v) = aaf + aay,
(b*) (aab)fec = a(abf)c = aa(bfc) and

(¢*) acb =0 for all a,b € M implies a = 0,

then M is called a I'-ring in the sense of Nobusawa[4], or simply, a Nobusawa [-ring
and we say that M is a ['y-ring. Clearly, M is a I'y-ring always implies that I is
an M-ring.
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Let M be a I-ring. Then M is said to be 2-torsion free if 2a = 0 implies a = 0
for all a € M. Besides, M is called a prime I'-ring if, for all a,b € M, aT'MTb =0
implies either a = 0 or b = 0. And, M is called semiprime if al’' MTa = 0 with
a € M implies ¢ = 0. Note that every prime I'-ring is obviously semiprime.

The notions of derivation and Jordan derivation of a I'-ring has been introduced
by M. Sapanci and A. Nakajima in [5], whereas, the concept of k-derivation of a
I-ring has been used and developed by H. Kandamar[3]. Afterwards, the concept
of Jordan generalized derivation of a I'-ring has been developed by Y. Ceven and
M. A. Ozturk in [2].

Here we introduce the concept of Jordan k-derivation of a I'-ring as follows and
then we build up a relationship between the k-derivation and Jordan k-derivation
of a I'-ring in a concrete manner.

Let M be al-ring and let d: M — M and k : T’ — T be two additive mappings.
If d(aab) = d(a)ab + aad(b) holds for all a,b € M and « € T, then d is called a
derivation of M. And, for all a,b € M and « € T, if d(aab) = d(a)ab + ak(a)b +
aad(b) is satisfied, then d is called a k-derivation of M. Finally, if d(aca) =
d(a)oa + ak{a)a + aad(a) holds for all @ € M and o € T, then d is called a Jordan
k-derivation of M.

From these definitions it is clear that every k-derivation of a I'-ring M is a Jordan
k-derivation of M. But, the converse statement is not true in general. Here we show
that every Jordan k-derivation of a 2-torsion free prime I' y-ring M is a k-derivation
of M. For this to happen we develop some important results as follows.

2. MAIN RESULTS

Lemma 1. Let M be a I'n-ring and let d be a Jordan k-derivation of M. Then
for alla,b,c € M and o, 3 € T, the following statements hold:

(i) d(aad + baa) = d(a)ab + d(b)aa + ak(a)b + bk(a)a + aad(b) + bad(a);

(i) d(aabfa + afbaa) = d(a)abfa + d(a)Bbaa + ak(a)bfa + ak(F)baa

+ aad(b)fa + aBd(b)aa + aabk(B)a + afbk(a)a + aabfd(a) + afBbad(a).

In particular, if M is 2-torsion free, then

(iit) d(aodaa) = d(a)abaa + ak(a)baa + aad(b)aa + aabk(a)a + aabad(a);

(i) d(aabac + cabaa) = d(a)abac + d(c)abaa + ak(a)bac+ ck(a)baa

+ aad(b)ac + cad(b)aa + aabk(a)c + cabk(a)a + aabad(c) + cabad(a).

Especially, if M is 2-torsion free and if aabfc = afbac for all a,b,c € M and
a,B €T, then

(v) d(aabBa) = d(a)abfa + ak(a)bfa + aad(b)Ba + aabk(B)a + aabfd(a);

(vi) d(acbfBc + cabfa) = d(a)obfc + d(c)abfBa + ak(a)bBc + ck(a)bBa

+ aad(b)Bc + cad(b)Ba + aabk(B)c + cabk(8)a + aabfBd(c) + cabBd(a).

Proof. Compute d((a + b)a(a + b)) and cancel the like terms from both sides to
obtain (i). Then replace a8b + bfa for b in (i) to get (ii). Since M is 2-torsion
free, (iii) is easily obtained by replacing « for 3 in (ii), and then (iv) is obtained by
replacing a+c for a in (iii). Again, since M is 2-torsion free and aabfc = afbac for
all a,b,c € M and o, € T, (v) follows from (ii) and then finally, (vi) is obtained
by replacing a + ¢ for a in (v). O
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Lemma 2. Let d be a Jordan k-derivation of a 2-torsion free I' n-ring M. Then

for allbe M and B €T, k(8b3) = k(8)bB + Bd(b)B + Bbk(B).

Proof. For all @ € M and o € I', we have d(aca) = d(a)aa + ak(a)a + aad(a).
Let b € M and 8 € I'. Then putting 8bg3 for a, we get d(afbBa) = d(a)BbBa +
ak(BbB)a+apBbBd(a). Expanding the LHS by Lemma (1)(iii), we obtain a(k(3b3) —
k(8)bB — Bd(b)B — Bbk(3))a = 0. Hence, by applying the Nobusawa condition (c*)
of the definition of I'y-ring, we get the proof. O

Lemma 3. If d is a Jordan ky-derivation as well as a Jordan ko-derivation of a
2-torsion free U'n-ring M, then ki = ko.

Proof. Obvious. O

Remark 4. If d is a Jordan k-derivation of a 2-torsion free I' y-ring M, then k is
uniquely determined.

Definition 5. Let M be a I'-ring. Then for a,b € M and o € T', we define
[a, blo = aad — baa.

Lemma 6. If M is a I'-ring, then for all a,b,c € M and o, 3 € T,
(i) [a,blo + [b,ala = 0;

(i) la + b, cla = [a,cla + [b,cla;

(i) [a,b+ cla = [a,b]a + [a, ¢|as

(w) [a>b]a+ﬁ = [a,b]a + [av b]ﬁ'

Proof. Obvious. O

Remark 7. Note that a I'-ring M is commutative if and only if [a,b]s = 0 for all
a,be M and a €T

Definition 8. Let d be a Jordan k-derivation of a I'y-ring M. Then for a,b € M
and a € T, we define F,(a,b) = d(aab) — d(a)ab — ak(a)b — aad(b).

Then we have, F,(b,a) = d(baa) — d(b)aa — bk{a)a — bad(a).

Lemma 9. 19 If d is a Jordan k-derivation of a T'ny-ring M, then for alla,b,c € M
and o, €T,

(i) Fuala,t) + Fa(b,a) = 0;

(i) Fo(a+b,c) = Fu(a,c) + Fu(b, c);

(i11) Fo(a,b+c) = Fula,b) + Fu(a,c);

(iv) Foyp(a,b) = Fy(a,b) + Fg(a,b).

Proof. Obvious. O

Remark 10. Note that d is a k-derivation of a I y-ring M if and only if F,(a,b) =0
for all a,b€ M and o € T.

Lemma 11. Let d be a Jordan k-derivation of a 2-torsion free I'y-ring M and
suppose that a,b € M and a,8 € I'. Then

(i) Fo(a,b)amala, b, + [a,blsamaF,(a,b) = 0;

(ii) Fy(a,b)fmpBla,bls + [a,b]afmBF,(a,b) =0;

(i11) Fg(a,b)amala,b)s + [a, bjgamaFs(a,b) = 0.
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Proof. (i) Consider G = d(aabamabaa + bagamaaab).

First, compute G = d(aa(bamab)aa) + d(ba(aamaa)ab) using Lemma 1 (iii) and
then, G = d((aab)ama(baa) + (baa)ama(aab)) using Lemma 1 (iv). Since these
two are equal, cancelling the similar terms from both sides of this equality and then
rearranging them with the use of Lemma 2.5(i), we obtain the result of ().

(ii) Considering G = d(aabfmpbaa + baafmBaab) and proceeding in the same
way as in the proof of (i) by the similar arguments, we get (ii).

(iii) Interchanging o and § in (ii), we obtain (iii). O

Lemma 12. Let M be a 2-torsion free semiprime I' y-ring and suppose that a,b €
M. If al'mI'b+bI'mI'a =0 for all m € M, then aI'mI'b = bI'mIl’'a = 0.

Proof. Let m and m' be two arbitrary elements of M. Then by hypothesis, we have

(@aI'mI'b)I'm/T(al'ml'b) = —(bI'mTa)T'm/T(al'mI'b)
= —(bI'(mLlal'm/)Y'a)T'mI'b = (al' (mT'al'm/)T'b)I'mIb
= aI'mI(al'm/TH)I'mIb = —al'mI(bI'm/Ta)I'mIlb
= —(aI'mI'b)I'm/T (al'mI'b).
This implies, 2((aT'mIT'b)I'm/T (al'mI'b)) = 0.
Since M is 2-torsion free, (aI'mI'b)['m/T'(aI'mI'b) = 0.

By the semiprimeness of M, al'mI'b = 0 for all m € M.
Hence we get, al'mI’'b = bI'mI'a = 0 for all m € M. O

Corollary 13. If M is a 2-torsion free semiprime I' y-ring, then for all
a,beM and o, €T,

(i) Fy(a,b)amala,ble = [a,b]aamaFy(a,b) = 0;

(ii) Fal(a,b)fmBla,bla = [a,b].Bmp3Fa(a,b) = 0;

(iii) Fa(a,b)amala,blg = [a,blgamaFs(a,b) = 0.

Proof. Using Lemma 12 in the result of Lemma 11, we obtain these results. g

Theorem 14. Let M be a 2-torsion free semiprime I' y-ring. Then for all a,b,c,d €
M and o, 3,v€ T,
(i) Fala, blamale, dlo = 0;
(i) Fu(a,b)Bmple,dla = 0;
(i11) Fy(a,b)amale,d]g = 0.
Proof. Replacing a + ¢ for a in Corollary 13 (i), we get
Fy(a,b)amale, blo + Fuo(c, byamala, ble = 0.
Therefore, we get

Fa(a,b)amale, bloamaF,(a, b)amale, bl
= —F4(a,b)amalc, bloamaF,(c,b)amala, bl, = 0.

Hence, by the semiprimeness of M, F,(a,b)amale, b, = 0.

Similarly, by replacing b+ d for b in this equality, we get
Fo(a,b)amale,d]o = 0.
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Proceeding in the same way as before by the similar replacements in Corollary 13
(ii), we obtain (ii).

Finally, replacing a + 3 for « in (i), we get
F,(a,b)amalc,d)s + Fg(a,b)amalc, d|s = 0.
Therefore, we have

F,(a,b)amalc, d| gamaF,(a, b)amale, d)g
= —F,(a,b)amalc, d gamaFg(a, b)amalc, d), = 0.

Hence, by the semiprimeness of M, we get Fi(a,b)amalc,d|s = 0. O

Theorem 15. Every Jordan k-derivation of a 2-torsion free prime I'y-ring M is
a k-derivation of M.

Proof. Let d be a Jordan k-derivation of a 2-torsion free prime I' y-ring M. Since
M is prime, we get from Theorem 14 (i) that either F,(a,b) = 0 or, [¢,d], = 0 for
all a,b,c,de M and a € T'.

If [c,d]o # O for all ¢,d € M and a € I'. Then Fy(a,b) = 0 for all a,b € M and
«a € T and hence we get, d is a k-derivation of M.

But, if [¢,d], =0forall ¢,d € M and « € T, then M is commutative and, therefore,
we have from Lemma, 1 (i)

2d(aab) = 2d(a)ab + 2ak(a)b + 2acd(b).

Since M is 2-torsion free, we obtain that d is a k-derivation of M. O
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