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Abstract. In this paper, we consider convergence of iterative-projection
method for solutions of a generalized system for three different nonlinear
relaxed co-coercive mappings in the framework of Hilbert spaces. Strong
convergence theorems are established. Our results improve and extend
the recent ones announced by many others.

AMS (MOS) Subject Classification Codes: 47H05, 47H09, 47J25
Key Words: Relaxed co-coercive nonlinear variational inequality; Projection method,;

Fixed Point; Asymptotically nonexpansive mapping.

1. INTRODUCTION AND PRELIMINARIES

Variational inequalities are among the most interesting and intensively studied classes
of mathematical problems and have wide applications in the fields of optimization and
control, economics and transportation equilibrium and engineering sciences. Variational
inequality problems have been generalized and extended in different directions using the
novel and innovative techniques. Various kinds of iterative algorithms to solve the vari-
ational inequalities have been developed by many authors. There exists a vast literature
[1]-[28] on the approximation solvability of nonlinear variational inequalities as well as
nonlinear variational inclusions using projection type methods, resolvent operator type
methods or averaging techniques. It is well known that variational inequalities are equiv-
alent to fixed point problems. This alternative equivalent formulation is very important

1
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from the numerical analysis point of view and has played a significant part in several nu-
merical methods for solving variational inequalities and complementarity problems. In
particular, the solution of the variational inequalities can be computed using the iterative
projection methods. For the convergence of the projection method, one may require that
the operator is strongly monotone and Lipschitz continuous. Gabay [10] has shown that
the convergence of a projection method can be proved for co-coercive operators. Note that
co-coercivity is a weaker condition than strong monotonicity. Recently, Verma [22]-[25]
introduced a new system of nonlinear strongly monotone variational inequalities and stud-
ied the approximate solvability of this system based on a system of projection methods.
Projection methods have been applied widely to problems arising especially from comple-
mentarity, convex quadratic programming, and variational problems.

In this paper, we consider, based on the projection method, the approximate solvability
of a system of nonlinear variational inequalities with different co-coercive mappings in
the framework of Hilbert spaces. Solutions of the system of nonlinear relaxed co-coercive
variational inequalities are also fixed points of asymptotically nonexpansisve mappings.
Our results obtained in this paper generalize the results announced by Chang et al [3],
Verma [22]-[24] and some others.

Let H be a real Hilbert space, whose inner product and norm are denoted by (-,-) and
|| ||- Let C be a closed convex subset of H andlet T : C' — H be anonlinear mapping. Let
Pc be the projection of H onto the convex subset C'. The classical variational inequality,
denoted by VI(C,T), is to find v € C such that

(Tu,v—u) >0, YveCl. (1.1)

We see that the point « € C is a solution of the variational inequality (1.1) if and only if
u € (C is a fixed point of the mapping Pc(I — AT'), where X > 0 is a constant. That is,

u = Pc(u— NTu). (1.2)

One can easily see variational inequalities and fixed point problems are equivalent. This al-
ternative equivalent formulation has played a significant role in the study of the variational
inequalities and related optimization problems.

LetT : C — H be a mapping. Recall the following definitions.
(1) T is said to be monotone if

(Tu—Tv,u—v) >0, VYu,veC.

(2) T is said to be ¢-strongly monotone if there exists a constant § > 0 such that
(Tz —Ty,z —y) > dl|lz —y||*, Vz,y€C.
This implies that
[Tz —Tyll = éllz —yll, Va,ye€C,
that is, T" is J-expansive and, when d = 1, it is expansive.
(3) T is said to be y-cocoercive if there exists a constant v > 0 such that

(Te - Ty,x —y) > 7|Tz — Ty|*, Vz,yeC.

(4) T is said to be relaxed ~-cocoercive if there exists a constant v > 0 such that

<T"E - Ty,x - y> Z (_’Y)HTx - Ty“2a any eC.
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(5) T is said to be relaxed (v, §)-cocoercive if there exist two constants v, > 0 such
that
(Tz —Ty,z —y) > (—)|Tz ~ Ty|* + ]|z —y||*>, Va,yeC.

Let S : C' — C be a mapping. Recall the following definitions. -
(6) S is said to be nonexpansive if

1Sz - Syll < llz —yll, Vz,yeC.

(7) S is said to be asymptotically nonexpansive if there exists a sequence {k, } C [0, 00)
with lim,,_, o k, = 1 such that

5" — 5"yl <knllz —yll, Vz,y€C n=0.

Next, we denote the fixed point of S by F(S). If 2* ¢ F(S)YNVI(C,T), then we have
the following

z* = 8S"z* = Polz* — pTz"] = S"Pelz* — pTz*], Vn>0.

This formulation is used to suggest the following iterative methods for finding a com-
mon element of the set of fixed points of asymptotically nonexpansive mappings and of
the set of solutions to variational inequalities. Recently, three-step iterative method was
studied by many authors to approximate solutions of variational inequalities and nonlinear
operator equations. It has been shown that three-step schemes are numerically better than
two-step and one step methods; see, for example, [15-17,27,28] and the reference therein.

LetTy,15,T5 : CxCxC — H be nonlinear mappings. Consider a system of nonlinear
variational inequality problems (SNVI) as follows:

Find (z*,y*, z*) € C x C x C such that

(sTi(y*, 2", 2" )+ 2" —y*,x—2) >0, YVzeC, s>0, (1.3)
Lz 2"y ) +y —2 e —2*) >0, VzeC,t>0, (1.4)
(rTa(z*,y*, 2" Y+ 2"~z e —2") >0, vVeel,r>0. (1.5)

One can easily see the SNVI problem (1.3)-(1.5) is equivalent to the following projec-
tion formulas:
¥ = Poly* —sTi(y*, 2", z%)], s>0,
y* = Polzt —th(z*, 2%, y")], t>0,
2* = Pole* —rTs(z*,y*, 2*)], 7>0,
respectively, where P is the projection of H onto C.
Next, we consider some special classes of the SNVI problems (1.3)-(1.5) as follows:

() If C is a closed convex cone of H, then the SNVI problem (1.3)-(1.5) is equivalent
to the following system (SNC) of nonlinear complementarity problems:
Find (z*, y*, 2*) € C x C x C such that

Ti(y*, 2% 2*) € C*, To(z*, 2%, y*) € C*, Ta{z*,y*, 2") e C*

(sTi(y*, 2", z") + 3" —y*, ") =0, s>0, (1.6)
<tT2(z*,m*,y*)+y* —Z*,.Z'*> 207 t> O) 17)
<TT3(‘T*ay*az*) + Z* - IE*,.’IZ'*> = Oa r> O: (18)

where C* is the polar cone to C defined by
C*={feH:{f,z) >0, VreC} (1.9)
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D If Ty = T = T3, then then the SVNI problem (1.3)-(1.5) reduces to the following
SNVI problems:
Find (z*,y*, 2*) € C x C x C such that

(sT(y*, 2", 2*)+z* —y",z—2*) >0, Vel s>0, (1.10)
(T (5 z*,y" ) +y -2z —2") >0, VzelC, t>0, (1.11)
(rT(z*,y*,2")+ 2" —z*, 2 —2*) >0, Vzel,r>0. (1.12)

) If T1,T>,T3 : C — H are univariate mappings, then the SVNI problem (1.3)-(1.5)
reduces to the following SNVI problems:
Find (z*,y*, 2*) € C x C x C such that

(sh(y*)+z* —y", 2 —2") >0, VzeC,s>0, (1.13)
{tTe(zY+y* - 252 —2%) >0, Veel,t>0, (1.14)
(rI3(z*)+ 2" — 2", —2") >0, VzeC,r>0. (1.15)

(AV)If Ty =To =T5 =T : C — H is a univariate mapping, then the SVNI problem
(1.3)-(1.5) reduces to the following SNVI problems:
Find (z*,y*,2*) € C x C x C such that

(sT(y*) 4z -y z—x*) >0, Vzel, s>0, (1.16)
(T(Y+y" — 2",z —x*) >0, VreC,t>0, (1.17)
(rT(x*)+ 2" —z*z2—x") >0, Vel r>0. (1.18)

One can easily get the SNVI problem (1.16)-(1.18) is equivalent to the following projection
formulas:

¥ = Poly" — sT(y")], s>0, (1.19)
y* = Pelz" —tT(z")], ¢>0, (1.20)
z* = Polz® —rT(z*)], r>0. (1.21)

Next, we introduce the following iterative methods for the above SNVI problems.

Algorithm 1. For any x¢, yp, 29 € C, compute the sequences {z, }. {y» } and {z,} by the
iterative process:

2n = S"Poltn — maT3(Zn, Yn, 20)],
= S"Pelzn — t2T2(20: Tny Yn)),
Tny1 = (1 — an)tn + anS"Polyn — $nTi(Un, 2n, Zn)], n >0,
where {a,, } is a sequence in [0, 1] and S is an asymptotically nonexpansive mapping.

Ty =15 =13 =T and S = I, the identity mapping, then Algorithm 1 is reduced to
the following: ‘

Algorithm 2. For any z, 4o, 2o € C, compute the sequences {z,}, {yn} and {2, } by the
iterative process:

n = PC[-Tn - TnT(-Tnayny Zn)],
Yn = PC[Zn - tnT(zm Ly yn)]a
Tn4+l = (1 - an)xn + anPC[yn - SnT(ynaZnyzn)L n >0,

where {, } is a sequence in [0, 1] for all n > 0.

e
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If 17,75,73 : C — H are univariate mappings, then the Algorithm 1 is reduced to the
following:

Algorithm 3. For any =y, 0, 20 € C, compute the sequences {x, }, {yn} and {z,} by the
iterative process:

2n = S"Polzy — rnT5T0],
Yn = SnPC[zn - tnTQZn])
Tnt+1 = (]- - an)xn + anSnPC[yn — 5,1y (yn)]a n 20,
where {a,, } is a sequence in [0, 1] and S is an asymptotically nonexpansive mapping.

IfTh =73 =715 =T : C — H is a univariate mapping and S = I, the identity
mapping, then we have the following:

Algorithm 4. For any xg, v, 20 € C, compute the sequences {z, }, {y,} and {z,} by the
iterative process:

zn = Polzn — raTzy),
Yn = Polzg — tnT2n],
Tony1 = (1 —an)zy, + anPolyn — s T(yn)], n >0,
where {a, } is a sequence in [0, 1].
In order to prove our main results, we need the following lemmas and definitions.
Lemma 1. Assume that {a,} is a sequence of nonnegative real numbers such that
Ont1 £ (1 —Ay)an + by +¢n, VYn > nyg,

where ng is some nonnegative integer, {\,} is a sequence in (0,1) with > ~__, A, = o0,
b, = o(An) and Y07 ¢ < 00, then limy .o arn, = 0.

Definition 2. A mapping T : C' x C' x C' — H is said to be relaxed ((v, §))-cocoercive if
there exist constants (-y, §) > 0 such that, for all z, 2’ € C

(T(z,y,2) —T(z',y,2"),z —z')
> (—NT(z,y,2) =Ty, 2> + )z —2'||*, Vy, o/, 2,2 €C.

Definition 3. A mapping T': C' x C' x C' — H is said to be p-Lipschitz continuous in the
first variable if there exists a constant i > 0 such that, for all z, z' € C,

T(z,y,2) —T(z',v,2")| <wplz— 2|, Vy,v,22 €C.

2. MAIN RESULTS

Theorem 4. Let C be a closed convex subset of a real Hilbert space H. Let T; : C X
C x C — H be a relaxed (v;, 6;)-cocoercive and p;-Lipschitz continuous mapping in
the first variable for each i = 1,2,3 and S : C — C an asymptotically nonexpansive
mapping with a fixed point. Suppose that =*,y*, 2* € F(S) and (z*,y*, 2*) € Q4, where
Q) denotes the set of solutions to the SNVI problems (1.3)-(1.5). Let {zn}, {yn}, {2n} be
the sequences generated by Algorithm I and let {a, } be a sequence in [0, 1]. Assume that
the following conditions are satisfied.

(@) Do om = 00;
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(b) E201,020,03n < 1, where

O1n = \/ 1+ S%M% - 25n51 + 25n71/~‘%> 02n = \/1 + t%ﬂ% - 2tn52 + 2tn72ﬂ%

and

83, = \/1 + 1242 — 21,03 + 2r, Y313

Then the sequences {x, }, {yn } and {z,} converge strongly to z*, y* and z*, respectively.

Proof. From the assumption, we have

T* = (1 — O!n)l'* + anSnPC[y* - SnTI(y*a Z*,.’E*)],
y* = SnPC[Z* - tnTZ(z*)l‘*ay*)]’
¥ = SnPC["E* - TnT3(:E*ay*7Z*)]'

It follows from Algorithm 1 that

lzni1 — 2"
= (1 — an)zn + 0 S" Polyn — $nT1(Yn, 2n, Tn)] — ||
= I(1 — an)zn + @nS" Polyn — snT1(Yn), 2n, Tn))
— (1= an)z* + anS"Pely* — s, T1(y*, 2", 2")]]|
< (= an)lizn — 2| + ankallyn — ¥* — $u[T'(Yn, 20, Tn) — T(y", 2%, 7)]|l.

(2.1)

By the assumption that T is relaxed (v1, é1)-cocoercive and p;-Lipschitz continuous in
the first variable, we obtain

In — 4" = 8a[T1(Yn, 20, Tn) — T1L(Y", 2%, )]

= [lyn = v*II” = 280 (yn — ¥, T1(Un, 20, Tn) — T2 (¥, 2%, 7))
+ 52| Ta(Yn, 2n, T0) — Tu(y*, 2%, ) |2

<y = 5™ = 250 [T (Wns 20, 20) — To(y", 2% 25 + S1llym — v*)1%] (2:2)
+ 5o u3llyn — v |12

< lyn — ¥ I1P 4 2507155 1 9n — ¥* 11> = 28061 llyn — ¥* 11> + s2pdllym — v* |12

=67 llym — v*II°,

where 61, = /14 8247 — 25,81 + 25,71 42. Now, we estimate

lyn = "Il = 15" Pelen = taTo(2n, Tn, yn)] — |l

= 5" Polzn — taT2(2n, Tn, yn)] — S"Polz* — toTa(z", 2%, y")]I| (2.3)
< anZn — 2" = tn[TZ(znaﬂfm yn) - TZ(Z*vl‘*ay*)]”-
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By the assumption that T is relaxed (-2, d2)-cocoercive and uo-Lipschitz continuous in
the first variable, we obtain
2n = 2" — tn[T2(2n, Tn, yn) — To(2", 2", y")]||?
= ||2n — 2*|1* = 2tn(2n — 25, T2(2n, Tn, Yn) — Ta (2", 2%, 4*))
o To(2n, T, yn) — To(2", %,y |2
< llzn = 2* 17 = 2ta =72l T2(2n, Ty yn) = To(2", 2%,y )P + G2ll2n — 2*11%] (2.4)
+ o pdllzn ~ 22
< lon = 217 + 2twy2i3 |20 — 21> = 2tnbsllzn — 2°||* + 13| 2n — 2*?

< 3 llzn — 212,

where 8o, = /1 + 1212 — 2,8, + 2t,y243. On the other hand, we have
l2n = 2*|| = |S" Pz — roT3(Zn; Yn, 2a)] — 27|
= |S"Polzn — raT3(%n, Yn, 2n)] = S"Pelz™ — rnT3(z", ¥, 27)]]| (2.5)
= knl|Pelzn = nT3(2n, Yns 20)] — Polz® — roTa(z™, y*, 27)]|l .
< kpl|zn — 2% = rolT3(T0, Yn, 2n) — Ta(z™, 3", 27)]|-

By the assumption that T3 is relaxed (vs, d3)-cocoercive and p3-Lipschitz continuous in
the first variable, we obtain
2 — 2 = a[T3(Tn, Y, 20) — Ta (2™, 5", 2%)] |12
= |lzn — 2*||° — 2rn{zn — 2, T3(%n, Yn, 2n) — I3(z*, 4", 2%))
+ 12 Ts(Tns Yns 20) — Ta(z*, 4%, 2%)|?

<l ~ 2*|1? = 2ral=2l|T3 (2, Yn, 20) ~ (@™, 4", 2°) | + 3]l2n — 2"|[?]

*”2

(2.6)

+roplln — 2"

< O3nllzn —27|1%,

where 03, = /1+7r2u2 — 2r,,63 + 2rp,y3p3. Combining (2.2), (2.3), (2.4), (2.5) and
(2.6), we see

lyn — 4" — sn[T1(Yn, 2n, ) — Ta(y", 2%, 27)]|| < k?zelnGQneSn”xn -z (2.7)
Substitute (2.7) into (2.1) yields that
[Zn11 — 2| <1 = an(l = k3 01n02n03n)) | 20 — z*||- (2.8)

Applying Lemma 1 to (2.8), we can get the desired conclusion easily. This completes the
proof.

O

Remark 5. Theorem 4 mainly improves the corresponding results of Chang, Lee and Chan
[3] and also extends the results of Huang and Noor [11] to some extent.

As applications of Theorem 4, we have the following results immediately.

Corollary 6. Let C be a closed convex subset of a real Hilbert space H. Let T : C x
C x C — H be a relaxed (v, d)-cocoercive and u-Lipschitz continuous mapping in the
first variable. Suppose that (z*,y*,2*) € Sy, where Qo denotes the set of solutions to
the SNVI problems (1.10)-(1.12). Let {zn}, {yn}, {zn} be the sequences generated by
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Algorithm 2 and let {a,, } be a sequence in [0, 1. Assume that the following conditions are
satisfied.

(b) 01,09n03, < 1, where

O1n = /14 8212 — 25,0 + 25, yp2, Oy = /1 4+ 1212 — 2,8 + 2ty

and

O3n = /147202 — 21,6 + 2r,yp2.

Then the sequences {zy, }, {yn} and {z, } converge strongly to =*, y* and z*, respectively.

Corollary 7. Let C be a closed convex subset of a real Hilbert space H. LetT; : C — H
be a relaxed (v;, 6;)-cocoercive and yi;-Lipschitz continuous mapping for eachi = 1,2,3
and S : C — C an asymptotically nonexpansive mapping with a fixed point. Suppose
that z*,y*, z* € F(S) and (z*,y*,2*) € Q3, where Q3 denotes the set of solutions to
the SNVI problems (1.13)-(1.15). Let {zn}, {yn}, {zn} be the sequences generated by
Algorithm 3 and let {«,, } be a sequence in [0, 1]. Assume that the following conditions are
satisfied.

(@) > 0n = 00

(b) k301n92n03n <1, where

01, = \ﬁ. + S%/L% — 28,01 + 23n'yl,u%, 0oy, = \/]. + t%,u% — 2,00 + Qtn’yg,u%
and

O3, = \/1 +r2u2 — 2r, 03 + 2rp Y3l
Then the sequences {z,}, {yn} and {z,} converge strongly to =*, y* and z*, respectively.

Corollary 8. Let C be a closed convex subset of a real Hilbert space H. LetT : C —
H be a relaxed (v, §)-cocoercive and p-Lipschitz continuous mapping. Suppose that
(z*,y*,z*) € Qu, where Q4 denotes the set of solutions to the SNVI problems (1.16)-
(1.18). Let {zn}, {yn}, {zn} be the sequences generated by Algorithm 4 and let {c,,} be
a sequence in |0, 1]. Assume that the following conditions are satisfied.

(a) Zf:o Qn = O0;

() 01p,00,03, < 1, where

O1n = /14 8202 — 25,0 + 25,02,  Oop = /1 + 1202 — 2t,6 + 2t yp?

and

030, = /1 + 7202 — 21,8 + 2rpy 2.

Then the sequences {z,}, {yn} and {z,} converge strongly to z*, y* and z*, respectively.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique
solution z* of equation

F(z) =0, (1.1)

where, F' is a continuous operator defined on a subset D of a Banach space A" with values
in a Banach space ).

A large number of problems in applied mathematics and also in engineering are solved
by finding the solutions of certain equations. For example, dynamic systems are mathemat-
ically modeled by difference or differential equations, and their solutions usually represent
the states of the systems. For the sake of simplicity, assume that a time—invariant system
is driven by the equation & = {z), for some suitable operator @, where z is the state.
Then the equilibrium states are determined by solving equation (1.1). Similar equations
are used in the case of discrete systems. The unknowns of engineering equations can be
functions (difference, differential, and integral equations), vectors (systems of linear or
nonlinear algebraic equations), or real or complex numbers (single algebraic equations
with single unknowns). Except in special cases, the most commonly used solution meth-
ods are iterative-when starting from one or several initial approximations a sequence is
constructed that converges to a solution of the equation. Iteration methods are also applied
for solving optimization problems. In such cases, the iteration sequences converge to an

11
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optimal solution of the problem at hand. Since all of these methods have the same recur-
sive structure, they can be introduced and discussed in a general framework.

We use the modified Newton method:
Zny1 = Tn — G'(xn) 7" Fzn) (n20), (z0€D). (1.2)

to generate a sequence approximating z*. Operator G'(x) € L(X. ) the space of bounded
linear operators from X into ), denote the Fréchet—derivative of operator G [2], [5], [11].
If G'(z) = F'(z) (x € D), we obtain Newton’s method

Tn4l = Tn — F/(‘rn)_l F(‘T:n) (n Z 0)7 (370 € D)a (13)
[31-[5], [81-{11]. :

The semilocal convergence of the modified Newton method (1.2) has been given by several
authors under Lipschitz—type conditions (see [1]-{15], and the references there).

Here, motivated by optimization considerations, we introduce the needed center—Lipschitz
conditions (see (2.14)) to find upper bounds on the norms || G'(z)~! G'(zo) | instead
of the less precise Lipschitz conditions (see (2.4)). In turn out that this way, we obtain a
new semilocal convergence analysis with the following advantages over the corresponding
ones in [1], [2], [6], [11]-[15]: larger convergence domain, finer estimates on the distances
| Zna1 — Zn ||, || Zn —x* || (n > 0), and an at least as precise information on the location
of the solution z*.

Numerical examples where our results apply to solve nonlinear equations (1.1) are pro-
vided, in cases earlier ones cannot [6]-[15].

2. SEMILOCAL CONVERGENCE USING INCREASING MAJORIZING SEQUENCES
We state a semilocal convergence result for the modified Newton method (1.2).

Theorem 1. Let ' : Dp C X — Y be continuous, and G : Dg C X — Y, be
satisfying the Fréchet differentiability on a disk D C D N Dg.
Assume there exist vy € D, and constants > 0, M > 0, K > 0, such that for x,y € Dy:

G'(zo) "L € LY, X); .1
| G'(z0) ™" F(zo) |I< n; 2.2)
| G'(zo) " (F=G)(x) —(F-G)y) IS M [[z—y|; (2.3)
| G'(z0) ™" (G'(z) -G W) ISK |lz—yl|; 2.4)
2K n<(1-M)y> 2.5)
and

U(xo,rg):{xeX z—=zo ||I€ 5} CD, (2.6)

where

oy e =M (0 2Km

gzt =0 (1 1 (1—M)2>' (2.7)

Then, sequence {z,} (n > 0), generated by modified Newton method (1.2) is well defined
Jor all n > 0, remains in U(xo, 7§, and converges to a solution x* of equation F(z) = 0.
Moreover, the following estimates hold for all n > 0:

“ Tn+l — Tn ||§ Tn+1 — Tn (2.8)

and
| zn — 2" |< 1% — 7y, (2.9)
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where, scalar sequence {ry} is given by:

To = O:
<K (rpn —Tn-1)+2 ]\I) (rp —Tn-1)
Tn+l = Tp — :rn_M (77/21)
2(1-Kry,) 1-Kr,
(2.10)
and K
g(r):? 2 —(1—M)r+n. (2.11)

Proof. Proof was provided in non—affine invariant form in ([12], p. 189). Here, we state
that the same proof can be provided in affine invariant form, if we use G’ (zo) ™! G(z),
G'(x9)~! F(z) instead of G(x), F(x) respectively used in [12].

That completes the proof of Theorem 1. d

Remark 2. Theorem 1 improves corresponding Theorem 5.3 in [12], since our results are
provided in affine invariant form. The advantages of affine versus non—affine convergence
results have been explained in detail in [8] (see also [5]).
It turns out that the results in Theorem 1 can be improved even further. Indeed, let us define
scalar sequences {g, }, {$n} (n > 0) for some L > 0 by:

qOZOa gL =17,

2.12
(K (Qn - Qn-l) +2 M) (Qn - Qn—l) ( )
= Qpa1 — > 1),
dn+2 = dn+1 2(1—L ¢n) (n>1)
and
S0 = Oa
2.13)
g(sn)
= —_— > .
Sn+1 = 8n _Ls (n>0)
In view of (2.4), there exists . > 0 such that
| G'(z0) ™ (G'(z) =G (o)) IS L [l 2 — o || for all z €D. (2.14)
Note that in general
L<K ‘ (2.15)

K
holds, and T can be arbitrarily large [3]-[5].

We can show the semilocal convergence theorem for the modified Newton’s method
(1.2).

Theorem 3. (1) If hypothesis (2.5) holds, then following hold for all n > 0:

0<qn <8, <1y (2.16)
0<nt1 —qn < 8ng1 —$n < Tng1 —Tp, 2.17)
0<¢" —gn < s —sp <17 — 1, ' (2.18)

and
¢t < st <, (2.19)
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where

q* = lim gq,, s* = lim s,. (2.20)
n—x n—oc

and r* is given in (2.7).

(2) Under the hypotheses of Theorem 1, sequence {x,} (n > 0), generated by modi-
fied Newton method (1.2) is well defined, remains in U(xq,q*) for alln > 0, and
converges to a solution x* € U(xq,q") of equation F(x) = 0.

Moreover, the following estimates hold for all n > 0:

| Tns1 = T IS Gny1 — gn (2.21)
and

| xn — 2" [|[< ¢" — qn. (2.22)

Proof. (1) The proof of this part follows using induction on n, (2.10)-(2.13), (2.15),
and standard majorization techniques [2]. [S], [11].
(2) Letx € U(zq.qg"). Using (2.7), (2.14), and (2.19), we obtain

| G'(z0) " (G'(x) =G () ISL |z -z [KLT <Kt <1 (2.23)
It follows from (2.23), and the Banach lemma on invertible operators [5], [11],
that G'(z)~* € L(Y. X) and

1
1-L flz—aoll
Using (1.2) for n = 0, (2.2), and (2.6), we get || z1 — 2o ||< n < r*. Thatis

x; € U(zg,7*), and (2.21) holds for n = 0. Let us assume that z;, € U(zg,*)
for all k& < n. Then, using (1.2), (2.3), (2.4), (2.10), (2.12), (2.15), (2.24), and the

| G'(2)"! G'(z0) [I< (2.24)

identity
K K
—ri—(1—-M)re+n = ("k—7r5-1)2+M (15 —715-1)
2 _ 2 (2.25)
1-K Tk 1-K Tk
we obtain in turn
| Zkg1 — zx [|=I| =(G'(zk) ™" G'(20)) (G'(20) ™" F(zx)) ||
1
< o (160 ™ (6@ - 6lons) - 6@ -z | +
— L g
|| G/(xo)_l (F(‘Tk) - G(.’L‘k) - (F(:Ck—l) - G(Ikﬁ-l))) “ (226)
1 K
1" Ia (5 | Tk — zp—1 || +M> | 2k — zr—1 ||

~1—-L g
which shows (2.21) for alln > 0.
Using part 1. of Theorem 3, and (2.26), we deduce sequence {z,, } is Cauchy in a
Banach space X, and such it converges to some z* € U(xg, ¢*) (since U(zg, g*)
is a closed set). By letting &k — oo in (2.26), we obtain F'(z*) = 0. Estimate
(2.22) is obtained from (2.21) by using standard majorization techniques [5].
That completes the proof of Theorem 3. il

1 K
(5 (g — qr—1) + M) (g — qu1) = gk+1 — Qk,
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Remark 4. 1t follows from Theorem 3 that finer majorizing sequences than {r, } can be ob-
tained. and under the same computational cost, since in practice, the evaluation of Lipschitz
constant K requires the evaluation of center—Lipschitz constant L. One is then wondering
if the Newton-Kantorovich—type hypothesis (2.5) can be weakened, since finer sequence
{gn } may be converging under weaker hypotheses. In [3]-[5], we provided sufficient con-
vergence conditions for more general majorizing sequences that {g, }. One such condition
which can be weaker than (2.5) is given in [4], [5]:

K 2L .
(E + 2—_(—5) dn+2 M <) for some 6 € (0,2). Q.27

In the next section, we provide sufficient convergence conditions other that (2.5), and
(2.27) using decreasing instead of increasing majorizing sequences.

3. SEMILOCAL CONVERGENCE USING DECREASING MAJORIZING SEQUENCES

We need the following result on majorizing sequences for modified Newton method
1.2)

1
Lemma 5. Letn > 0, K > 0, M >0, and L > 0 be given constants. Set ty = I Define
functions A, A, C on [0,+00)2, and B on [0, +oc) by
At,v)=(Kt+M)?2—(K-2~vL) (Kt+2 M)t

Alt,y) =2 (Kt+M+\/m>,

B(t) =2 (K t+2 M),

and o
t
Ct,y) = .
( A(t,)
Assume any of the following hold:
function
filz) =1-2z-C(t, ) (3.1
has a non—negative zero vy = y(to) at t = to, such thar:
K
=2Ln< v —; 3.2
g 1<% S 575 (3.2)
or
K+M~-L>0, (3.3)
fto(B) 2 0, (3.4)
and hypothesis (3.2) holds;
or
function f; has a non—negative zero v} at t = ty, such that:
K
;< — 3.5
=57 (3.5)
and

B < o, (3.6)
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where
-1
ﬂ0=4{M+2+\/(M+2)2+4(;iL—1)} : 37
or
. K
ftl (ﬂl) S 0) ﬂl = mln{ﬂ()u 5—.[/}, (38)
fi, (B) 20, (3.9)

(3.5), and (3.6) hold.
Note that the existence of o (or <)) follows from the intermediate value theorem applied

K
to function fi, (or fi,) on the interval [ﬂ, ﬁj‘ (or [, (1]) respectively.
Then, scalar sequence {t,} (n > 0) generated by

tl :to—’f],

(K (tn1 —tn) +2 M) (ot — tn) (3.10)

o1 = tn — 2Lt (nZl),
n

is well defined, decreasing and converges to some t* € [0, 1g).

Proof. f n = 0, then t,, = tg = t* (n > 0). Let us assume 1 # 0. Function A is
a quadratic polynomial with leading coefficient 2 K ~g L (for v = ), and whose sign
of the discriminant is the same with: 2 g L (2 v9 L — K). It then follows by (2.2) that
functions A and C are well defined on [0, 00) x [0, ~o]. It also follows by definition of g
that v € (0,1). Set:
tn-ﬁ-l
tn

= 1 - ’Yn,
where,
(K (tno1 —tn) + 2 M) (tho1 —tn)

oL 2

We shall show: ¢, > (1 — ) tg—1, which if ¢,y > 0, implies 0 < ¢ < tx—;. But,
tr > (1 =) th—y holdsif 1 — v, > 1 — g ory, <y or

(K—QL’Y()) t,zc—Q(Ktk_l—l-M) tk+(Ktk_1+2M) te—1 <0,

ort; > C(tk—1,%) tk—1. Using (3.10), and the definition of t5, we get t; > (1 — v) to.
That is we have:

t1 > (1 =) to = t1 > C(to, ) to == t2 > (1 — v) t1.

Similarly, we show this implication holds in general, i.e.,

the1 > (1 —0) tk—2 == to1 > Clto, o) thez <= tx > (1 — %) ther (k> 1).

If the alternative conditions (3.5)—(3.9) hold, then t; > 0, and t3 > (1 — v4) t2, and the
induction follows by analogy.

The induction is completed. Hence, sequence {¢,,} (n > 0) is decreasing positive, and as
such it converges to some t* € [0, tg].

That completes the proof of Lemma 5. d

(n>1).

Tn = 'Y(tn) =

‘We can show the following semilocal convergence theorem for modified Newton method
(1.2):
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Theorem 6. Let ' : Dy C X — Y be continuous, and G : Dg €T X — Y
be satisfying the Fréchet differentiability on a disk D C Dr N Dg. Assume there exist
zg € Dy € D, and constants > 0, K > 0, M > 0, L > 0, such that for z,y € D:

G'(zo) "t € LY, X);

I G'(z0) ™" F(zo) 1< m;
| G'(zo)™ (F~G)(z) ~(F-G)) IS M | z—=z||;
| G'(z0) ™ (G'(2) - G'W) IS K [z -yl
| G'(@o) ™" (G'(z) = G'(z0)) IS L || & — o I

Tlao,to~#) D (or Tla, 1) € D),
and hypotheses of Lemma 5 hold.
Then, sequence {x,} (n > 0), generated by modified Newton method (1.2) is well defined,
remains in U(zq,to — t*) for all n > 0, and converges to a solution z* € U(zg,tg — t*)
of equation F'(z) = 0.
Moreover, the following estimates hold for all n > 0:

| Zrt1 — Zn |<tn — tnyr (3.11)
and
| zp — 2™ [|< tp — 7. (3.12)
Furthemore, if
K (to—t")+ M < L t*, (3.13)
or
2KL M <1, (3.14)
@* is the unique solution of equation F(z) = 0 in U (zq, to — t*).

Proof. As in (2.26) for ), € U(z,t*), we arrive at:

1 K
| 2o =z [|< =7 (to—t) <— (te-1 — tx) +M> (te—1 —tk) = bk — o4,

2
(3.15)
which implies (3.11). Estimate (3.12) follows from (3.11) by using standard majorizing
techniques [5], [11].
It is show uniqueness part. Let y* € U(zg,ty — t*) be a solution of equation F(z) = 0.
Using (1.2), we obtain the identity

Tipr — Y = zp—G(ak) "t Flog) — y*
= —(G'(zx)"" G'(z0)) <(G’($k) (zr —y*) — (G(zk) — G(y"))+

(Flew) - Glaw) — (") - G(y*»)),
(3.16)
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which as in (2.26) leads to:

I Zrsr —y* |l

1 K
< = oyt || +M —y*

1 K
< (-t +M —y*
< = (g to= M) la-y]

1 K
< — (tg—t* M —y*
<75 (5 t0=t)+ M) o=
<z —y* |l (by (3.13) or (3.14)),
which shows lim z; = y*. But, we already showed lim z; = z*. Hence, we conlude
w* _ y*. k— oo k—o00 ) .
That completes the proof of Theorem 6. 3 ‘ O

4. SPECIAL CASES AND APPLICATIONS

A direct comparison between Theorems 1 and 6 is not possible, since the former uses an
increasing majorizing sequence and the latter a decreasing one. However, we can compare
the sufficient convergence condition (2.5) with the corresponding ones in Lemma 5, at least
in some intersting special cases.

(1) Case F(z) = G(z), (z € D). (Newton’s method). Condition (2.5) reduces to the
famous Newton—Kantorovich hypothesis [5], [8], [11]:

hg =2 Kn<1, 4.1)
since M = 0, where as condition (3.2) becomes:
ha=2Kn<l, 4.2)
where (
— 1
K=§(K+4L+\/K2+8LK>, 4.3)
since,
VK?+8LK-K
Yo = : 4.4)
vVK?4+8LK+K
Note that
K<K . (4.5)
hold in general, and J7e can be arbitrarily large [3]-[5]. In case L < K, then strict
inequality holds (4.5). ) T
It follows from (4.1), (4.2), and (4.5) that

hKS]-:>hAS1, (46)

but not necessarily vice verca unles, if K = L (see also Examplel).
(2) Case F(z) # G(z) (z € D). Then we can only compare Theorem 1 with Theorem
6 using numerical examples.
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1
Examplel. Let ¥ =Y =R, 20 =1,D = [o,2 —a], ¢ € [0, 5), and define function F
and G on D by

F(z)=G(x)+e¢|zx—1] and G(z)=2%-aq, 4.7

where, € is a given real number.
Using (2.1)—(2.4), we obtain:

1
n=3(-0a), L=3-0a, K=2(2-a), and M=|d.

Note that function F' is continuous but not differentiable on D, since a F’(1) does not exist.
Hypothesis (4.1) is violated, since
1

). (4.8)

1
42~ q) (5 (1—a)—|—|e|>>1 for all ¢ and a6[0,2

That is there is no guarantee that sequence {x,}, starting at o = 1 converges under the
hypotheses of Theorem 1.
However, our Theorem 6 can apply to solve equation F(z) = 0.

Let us consider two cases:

1
(1) Case € = 0. Then condition (4.2) holds for & € [.450339002, 5], which is the

same range, given by us in [4] using a different approach. _
(2) Case € # 0. Choose e.g.: € = .1, and @ = .49. Then, we get:

n=.17, L=251, K=302 M=.1, t,=.398406374,
= 22840637, 7o =.410812, i =.369936,

K
p=8534, 5= =.601503625, and fo = 1.058703597.

Hence hypotheses (3.5) and (3.6) of Lemma 5 are satisfied. That is the conclusions
of Theorem 6 apply to solve equation F(z) = 0.

We complete this study with an example involving a nonlinear integral equation of Chandrasekhar—
type [1], [2], [51, [71, [11]. For simplicity, we choose F(z) = G(z) (z € D).

Example2. Let ¥ = Y = ([0, 1] be the space of real-valued continuous functions defined

on the interval [0, 1] with norm

I o ll= o Ja(s)!

Let 6 € [0, 1] be a given parameter. Consider the “cubic” integral equation

u(s) = u(s) + Au(s) / q(s,t)u(t)dt +y(s) — 6. 4.9)
Jo

Here the kernel g(s, t) is a continuous function of two variables defined on [0, 1] x [0, 1]; the
parameter ) is a real number called the “albedo” for scattering; y(s) is a given continuous
function defined on [0, 1] and z(s) is the unknown function sought in C[0,1]. Equations
of the form (4.9) arise in the theory of radiative transfer, neutron transport, and the kinetic
theory of gasses [1], [2], [4], [7].

For 31mp11c1ty, we choose uo(s) = y(s) = 1, and q(s,t) = s—-l—t’ for all s € [0,1], and
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t€[0,1], with s +¢ # 0. If we let D = U(ug, 1 — ), g = 0 and define the operator F' on
D by

F(z)(s) = 23(s) + Az(s) /0 q(s,t) z(t) dt + y(s) — 6, (4.10)

for all s € [0, 1], then every zero of F' satisfies equation (4.9). We have the estimates

max |/Ldt| =In2.
0<s<1 s+t
Therfore, if we set by =|| F'(ug) ™" ||, then it follows from (2.1)~(2.4) that:

n=q (AN In2+1-0), K=2¢ (A In2+3(2-9)),
L=q 2|\ In2+3(3-6)).

It follows from Theorem 6 that if condition (4.2) holds, then problem (4.9) has a unique
solution near wug. This condition is weaker than the conditions given before using the
Newton—Kantorovich hypothesis (4.1).
Note also that L < K forall § € [0, 1].

CONCLUSION

We provide a semilocal convergence analysis for a modified Newton method consid-
ered also in [4], [S], [12], [13], [15], in order to approximate a locally unique solution of
an equation in a Banach space.

Using a combination of Lipschitz and center-Lipschitz conditions, insted of only Lipschitz
conditions used in the works above, we provide an analysis with the following advantages:
larger convergence domain and weaker sufficient convergence conditions. Note that these
advantages are obtained under the same computational cost, since in practice the compu-
tation of the Lipschitz constant K requires the computation of L.

Numerical examples further validating the results are also provided.
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Abstract. The local convergence of the Gauss—Newton method is studied
under a combination of the radius and center-Lipschitz average functions
[3], [7], [8]. Using more precise estimates and under the same or less com-
putational cost, we provide an analysis of this method with the following
advantages over the corresponding results in [8]: larger convergence ball,
and finer error estimates on the distances involved.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution z* of
equation
F'(z)T F(z) =0, (1.1)
where F' is a Fréchet—differentiable operator defined on X = R"™, with values on Y = R™
(m > n). ‘

A large number of problems in applied mathematics and also in engineering are solved
by finding the solutions of certain equations. For example, dynamic systems are mathemat-
ically modeled by difference or differential equations, and their solutions usually represent
the states of the systems. For the sake of simplicity, assume that a time—invariant system
is driven by the equation £ = T'(z), for some suitable operator T', where z is the state.
Then the equilibrium states are determined by solving equation (1.1). Similar equations
are used in the case of discrete systems. The unknowns of engineering equations can be
functions (difference, differential, and integral equations), vectors (Systems of linear or
nonlinear algebraic equations), or real or complex numbers (single algebraic equations
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with single unknowns). Except in special cases, the most commonly used solution meth-
ods are iterative-when starting from one or several initial approximations a sequence is
constructed that converges to a solution of the equation. Iteration methods are also applied
for solving optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the same recur-
sive structure, they can be introduced and discussed in a general framework.

We are seeking least—square solutions of (1.1). That is we solve the minimization prob-

lem: 1 :
— T
miy 5 F(z)" F(z). (1.2)

We use the famous Gauss—Newton method
tr1 =2k — (F'(ap)T F'(z))™" F'(z1)T Fzr) (mo€X), (k>0) (1.3)

to generate a sequence approximating a solution z* of (1.2).

There is an extensive literature on the local as well as the semilocal convergence analy-
sis of Newton—type methods under various conditions in the more general setting when X’
and ) are Banach spaces [1]-[11].

In particular, in the case of Gauss—Newton method (1.3), Li et al. provided a local con-
vergence analysis in [8] using the concept of the generalized Lipschitz condition with L
average (inaugurated by Wang in [10]), which unified the Kantorovich—-domain-type [1]-
[3], [6] approach with the Smale—point—estimate—type approach [3], [9], [10].

Recently, we have successfully used in [1]-[3] a combination of Lipschitz and center—
Lipschitz conditions (instead of only Lipschitz conditions as in to provide a finer local and
semilocal convergence analysis for Newton—type methods, when F is an isomorphism.
The main idea is derived from the observation that more precise upper bounds on the
norms || F'(z)~! F'(z*) || can be obtained if the needed center—Lipschitz condition is
used:

| F'(z*)~! (F'(z) = F'(z*)) |< Lo ||z —2* |,

forallz e U(z*,rg) ={z€X ||lz—z*|[<ro} CX, 10>0, {>0 (14)

instead of the commonly used Lipschitz condition ([4]-[11]):
| F'(z*)"! (F'(2) = F'() IS¢ |2~y |, forallz,yeU(z* ), £>0. (1.5)
If condition (1.5) holds, then, it follows that there exists £y € [0, ], such that (1.4) is

14
satisfied, and A can be arbitrarily large [3].
0
It turn out that these ideas can be used to study the local convergence of the Gauss—
Newton method (1.3). In particular, we provide a local convergence analysis with the
following advantages over the work by Li et al. [8]:

(1) Larger convergence ball. Enlarging the convergence ball is very important in com-
putational mathematics because it allows for a wider choice of initial guesses in
the case of the local convergence of the Gauss—Newton method (1.3).

(2) Finer estimates on the distances involved, which implies that fewer iterations are
needed to achieve a desired error tolerance.

(3) An at least as precise information is provided on the uniqueness of the solution.
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The above improvements are also obtained under the same computational cost since the
computation of the radius Lipschitz condition with L average (see (2.1)) requires that of
the center—Lipschitz with Lq average (see (2.2)).

2. PRELIMINARIES
We need to introduce the concept of Lipschitz condition inaugurated in [10]:

Definition 1. The operator F' : R™ — R satisfies the radius Lipschitz condition with
L average on U(z*, rg) if

s(zx)
| F(z) - F(z:) ||I< / L(t) dt, forallz € U(z*,mo), 0 <7 <1, 2.1

T s(x)
where, L is a positive non—decreasing function on [0, 7o], s(z) =|| z — z* ||, and z, =
¥+ 7 (T — ).

Definition 2. The operator I : R™ — R™ satisfies the center—Lipschitz condition with
Ly average on U(z*, o) if

s(x)
| F(z) = F(z*) ||< / Lo(t) dt, for all = € U(z*, ro), 22)
0

where, L is a positive non—decreasing function on {0, rg).
Note that in [7], [8], [10], the same function L is used in Definitions 1 and 2. However,
Lo(t) < L(t) te0,r0) 2.3)
L
holds in general and I can be arbitrarily large [1]-[3].
0
We provide an example where strict inequality holds in (2.3).

Examplel. Let X = )Y = R2, be equipped with the Euclidean norm,
z* = 0, and define function F on U (0, 1) by

F(z)=(e"-1,¢ = 1T, z=(z,9)T. 2.4
Then, using (2.1), and (2.2), we obtain:
Lt)=£=+2e, and Lo(t) =% =+v2(e—1) forallte[0,1]. (2.5)
It follows from (2.5) that
Lo(t) < L(t) forallt € [0,1]. (2.6)

As noted in the introduction using our (2.2) instead of (2.1), which was
employed in [8] for the computation of the norms

I (F'(@)T F'(@)~" F'(2) | | F'(z) = F'(z*) l, = €U(a*,mo),
leads to the advantages, as stated at the end of the introduction of this
paper.

Let R™*™ be the set of all m x n matrices, and A* be the generalized inverse of
A € R™*™, Then, when m > n, and A is of full rank, we have A* = (AT A4)~! AT.

‘We need the lemmas:
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Lemma 3. (7] Let A,E € R™*". Assume B= A+ E, and || AT || || E ||< 1. Then, the
following hold:
rank (B) > rank (A).
If rank (A) = n, m > n, then we have rank (B) = n.

Lemmad. [7] Let A,E € R™*". Assume B= A+ F, and || A" || | E||< 1. Then, the
following hold:

A" ]
I BY|I< :
1= LAY [ El
provided that rank (B) = rank (A).
Moreover,
V2 AT E |
I BT —A™ <

1= [ A+ E|

provided that rank (A) = rank (B) = min {m,n}.

Lemma 5. [7], [8] Let M be a positive non—decreasing function on [0,1o]. Then, for each
a > 0, the functions

t
folt) = 5 /0 u M(u) du

and
1
9t) =

are non—decreasing on [0, 1g].

/Ot (2t —u) M(u) du

3. LOCAL CONVERGENCE ANALYSIS OF METHOD (1.3)

We shall show the main local convergence result for the Gauss—Newton method (1.3)
using a combination of the radius Lipschitz condition with L average, and the center—
Lipschitz condition with Lo average on U (z*,1g):

Theorem 6. Let F' : R™ — R™ be continuously Fréchet—differentiable on U(z*,ry),
where =* is a solution of (1.2) and rog > 0. Set

b=|| (F'(z*)" F'(z*))™ F'(z*)" |, and c=[ F(z") |

Moreover, assume operator F'(x*) is of full rank and F' satisfies the radius Lipschitz
condition with L average and the center—Lipschitz condition with Ly average on U (z*, 19).

Furthemore, assume function ho has a minimal zero r on [0, ro|, which also satisfies:

b Lo(t) dt < 1, 3.1
| 2ot et < @1
where, ' ‘
P P
ho(p) = (/ L) tdt+ (V2bc+p) / Lo(t) dt) b—p. (3.2)
0 0

Then, sequence {zy} (k > 0) generated by the Gauss—Newton method (1.3) is well de-
fined, remains in U(z*,r) for all k > 0, and converges to =*, provided that xo € U(z*, 1)
with xo # z*.
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Moreover, the following estimates hold for all k > 1:

lox—2* || < o oo —2* [P +8 || 241 — 2" |

< ¢ llmo-a* |, G-
where,
s(zo)
b / L(t) t dt
o= e , (3.4)
<1 -b / Ly(t) dt) 5(z0)?
0
s(zo)
V28 ¢ / L(t) dt
8= S(IO)O , (3.5
<1 b / Lo(®) dt) s(z0)
0 .
and
0<go=as(z)+B<1. (3.6)

Proof. Using (2.2), (3.1), and the choice of r, we obtain in turn:

s(zo)
b / Lo(t) dt
0

| (F'(z*)T F/(a*)™ F'(@)T || | F'(z) = F'(z*) | <
< b / Ly(t) dt < 1.
0
3.7
In view of Lemmas 3, 4 respectively, and (3.7), F'(z) is full rank and satisfies ‘
b
FI T FI T —1 FI T < . ,
| (@) F@)™ FaT I ———s .
1—b / Lo(t) dt
0
and
| (F'(z)T F'(z))™* F'(2)T — (F'(z*)T F'(z*))~! F'(z*)7 ||
s(xo
V2b / Lo(t) dt
- o o(®) (3.9)
- s(zo)
1-b / Lo(t) dt
0
forall z € U(z*,r).
Moreover, in view of Lemma 5 for ¢ = 0 and @ = 1, we get in turn
s(zo) s(zo)
/ M@)tdt / M) tdt
0 — S(CCO) 0
s(z s(zg)?
@) @ 510

IA

/ M(t) t dt / M(t) tdt

0 : _JO

T 2 - 1]
T . T
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s(zo)
/0 M(t) d / Mt ' 3.11)
 s(m)
Using (3.1), (3.6), (3.10), (3.11), and the choice of r, for M = L or L, we obtain:

and

s(xg) s(zo)
1 b / L(t) t dt V2 b e / L(t) dt
0 0
0< 7 = 3(;1;0) < s(zo) + s(xo) )
1-b / Lo dt  1—b / Lo(t) dt
0 0

] ] (3.12)
. b/L(t)tdt \/§b2c/L(t)dt
< = ( 0 + 10 ) < 1.
" N1—p / Lo(t)dt 1—b / Lo(t) dt
0 0
Using Gauss—Newton method (1.3), we obtain the identity
Czp =1 = xR — 2~ (F(zko1)T Fl(zo1)) 7 F(zk-1)T Fzk-1)
= (F'(zx-1)" F'(zp-1))"" F'(@e-1)" (F'(z5-1) (@1 — 2%)~
F(zg-1) + F(a*)) + (F'(z*)T F'(2*)) ! F'(z*)T F(a*)—
(F'(ze-1)T F'(zp-1))"" F'(zx-1)" F(a*).
(3.13)

In particular for & = 1 in (3.12), since 25 € U(z*,r), we obtain in turn using (2.1),
(2.2), (3.8), and (3.9):

|z — 2> |
<|l (lF’(xo)T F'(20)) ™" F'(z0)7 || x

|| /0 (F(w0) = F'(w0 + 7 (5" — 0)) (w0 — #*) dr || +
| (@) (@)™ F(@)T — (F(20)T F'(z0))"" F'(zo)T || | F(*) |

s(zo)
s(zo) V2 e / Lo(t) dt
0

< s(-’to) / /Ts(z ) ) b slwo) dr + 5(z0)

1-b / Ly(t) d ¢ 1-b / Lo(t) dt

) 0 0
b s(xo) s(xo)
= Lit)tdt+vV2be Lo(t) dt ).
s(xo) o 0
1-b / Lo(t) dt _
0
(3.14)

It follows from (3.6) and (3.14) that:
| z1—2" [[< g || 20 —2* |, (3.15)
which implies z; € U(z*, 7).

Hence, (3.3) holds for k£ = 0.
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Assume xj, € U(x*,r), by exchanging x4, z; with x, Tx,1, we obtain:
| Zo41 — 2 ||

s{zk) s(zx)
b / Litytdt  VBBe / Lo(t) dt
0 + 0

- s(zk) s(zk)
1—b/ Lo(t) dt 1—b/ Lo(t) dt
0 0

s(=x) s(zx) (3.16)
b / L(t) t dt s(zx)? V2H e / Lo(t) dt s(zx)
0 + 0
s(zo) s(zr)
S(:Ek)2 (1 -b / Lo(t) dt) S(:Ek) <1 —-b / Lo(t) dt>
0 0
<q llzx—2*I<gg*" llzo—2*|<r
(by Lemma 5, which implies 25, € U(z*,r), and klim TE =T,
— 00
That completes the induction and the proof of Theorem 6. . O

Remark 7. If estimate (2.3) holds as equality, then our Theorem 7 reduces to Theorem 3.1
in [8]. Otherwise, i.e., if (2.3) holds a strict inequality, then our result improves Theorem
3.1 in [8] under the same computational cost, since in practice the evaluation of function L
requires that of L. Let h, g, 1 be as hg, qo, r respectively by simply replacing Lq by L.

Then, we have:
rp <7 3.17)
and
g0 <gq. (3.18)
Since, r; and g were used in [8], it follows from (3.17) and (3.18) that in this case a
larger convergence ball is obtained and smaller ratio than in [8].

‘We state the local convergence result for the Gauss—Newton method (1.3) using only
the weaker center—Lipschitz condition with Lq average on U (z*, 7).

Theorem 8. Let F' : R™ — R™ be continuously Fréchet—differentiable on U(z*,19),
where ©* is a solution of (1.2) and ry > Q.

Moreover, assume operator F'(x*) is of full rank and F' satisfies the center—Lipschitz
condition with Lq average on U (z*, 7).

Furthemore, assume function Hy has a minimal zero r on [0, ro), which also satisfies:

b / Lo(t) dt <1,
0

where, b is defined in Theorem 6, and Hg has the following form:

Ho(p) = (/OP(2p——t) Lo(t) dt+ (V2 b c+p) /OpLo(t) dt) b—p. (3.19)

Then, sequence {xy} (k > 0) generated by the Gauss—Newton method (1.3) is well de-
fined, remains in U(z*,r) for all k > 0, and converges to =*, provided that o € U(z*, 1)
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with xg # x*.

Moreover, the following estimates hold for all k > 1:

Iz —2* || < oo ||zp-1—2* > +B0 || zk—1 —a* ||

- 3.20
S qk “-'170—517*”, ( )
where,
S(.’Eo)
Qg = 0
s(zo) ’
(1 —b / Lo(t) dt> 5(xq)?
0
s(zo)
V2b?e / Lo(t) dt
— 0
Po = s(zo) ’
(]. -b / Lo(t) dt) S(.’L‘())
0
and

0<g=0ag s(zg)+ Fo <1
Proof. We shall show (3.20) for all £ > 1.

As in the proof of Theorem 6, using (1.3) for k = 1, (2.1), and (2.2), we get:
| 21 —z* |
<|l (IF’(wo)T F'(20))~" F'(z0)" || x
I [ (@) = Flao+7 (" = 20)) (a0~ ") dr | +

| (/)T F'(a*)* F'(@)7 - (F(2)T F'(20))! F'(20)” || | Fa*) |

<b /O I (F"(z0) — F'(«*)) + (F'(z*) — F'(xo + 7 (2" ~ x0)) || || xo — 2 || dr+
I (F' (@)™ F'(@*)™" F'(2*)T = (F'(z0)" F'(z0)) ™! F'(z0)” || | F(=*) |

b 1/ (o) - s(z0)
= s(2o) / (/ Lo(t) dt +/ Lo(t) dt) s(zo) dr
1-b / Lo(t)dt "% 7° 0

0

s(zo)
V28 ¢ / Lo(t) dt
0

s(zo)
1-b / Lo(t) dt
0

+

s(zo)
= b (/O (2 s(zo) —t) Lo(t) dt || zo — =* || +

s(z0)?2 (1 b /0 ) dt)

s(zo)
V2b cs(xp) /0 Lo(t)dt || zo — =™ || )

=7 [[zo—a||.
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Therefore, z; € U(z*,r). Clearly, (3.20) holds for & = 0. Assume that z3, € U(z*, 1),
(3.20) holds for k& > 0, and s(zy) decreases monotonically. Then, using Lemmas 3, and 3,
we have in turn:

I Ze4r —2* ||
s(zk) 4

b (@ 5(ze) — ) Lo(t) de || 25— 2 |P +

s(zk)? <1—b/0
V2b cs(zi) /Os(zk) Lo(t) dt || z — z* ||>

<

o Lo(t) dt) </°

b

s(z0)?2 <1—b /0 Lo(?) dt)

s(zo)
ﬁbcs(mo)/ Lo(t) dt || 25 — o* ||)
0

<

s(zo)
</o (2 s(xo) — t) Lo(t) dt || zp — z* |2 +

s(zo)

<q |lap—* ST |@o—a .
That completes the induction, and the proof of Theorem 8. O

Remark 9. If estimate (2.3) holds as equality, then our Theorem 8 reduces to Theorem 3.2
in [8]. Otherwise, i.e., if (2.3) holds a strict inequality, then our result improves Theorem
3.2 in [8] under less computational cost, since the evaluation of L is more expensive than
the evaluation of Ly. Let H, g, 72 be as Hy, g, r respectively by simply replacing Lo by L.

Then, we have:
ro <71
and

2l

7<

4, APPLICATIONS

In this section we apply the results of Section 3 in a concrete case. Assurue: Lo () = Lo,
and L(t) = L on [0, c0). That is consider the Kantorovich-type case. Then in the case of
Theorem 6, and also using the notation introduced in Remark 7, we can easily obtain:

_2(1—+v2b?cLp)
B (2Lo+L)b ’
_ (Ls(zo)+2v2bcLy)b
N 2 (1—b Lo s(zg)) '
2(1-v2bcl) <
3bL =

1

4.1
and
_ (s(m)+2vV2bc)b L N
T 2(1-bLs(m)) -
Note that strict inequality holds in (4.1), and (4.2), if Ly < L.

@.2)

We provide a numerical example using the above values.
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Example2. Return back to Example 1. Then, we have ¢ = 0, b = /2,
and for zg = .2,

ry = .122626481, q = .595665552
r =.162473616 and qo = .414155282.
That is, we conclude that estimates (4.1), and (4.2) hold as strict in-

equalities.

Below, we provide a comparison between error bounds obtained in
Theorem 3.1 [8], and Theorem 6 in this study.

Comparison table

kg oo —a* |l | g™ || 2o —a* |
0 119130759 .082831056

1 .070960689 .03430492

2 042268004 .014207564

3 025177097 .005884138
20 .000006323 .000000004
22 .000002243 0

Finally, we provide an example where (2.2) holds, but (2.1) is violated.
Example3. Let ¥ = R, and ) = R?. Define

gl(:zr)z/ 142 sin T dz, gz(:zr)=l:z:2 forall zeX
0 4 x 8

and
9:(91,92)T
Then, we get
, 1+Z sin 2, if z#0
91(z) = 4 z
1, if =0
and

gs(z) = iﬁ forall zeX.
Clearly, z* = 0 is a solution of (1.2) (with F' is replaced by g).

We also have
1
| g'(x) — g'(z*) ||= 3 |z—2*| forall zekX.

That is, we can set

Lo(t) = 5.

. 2
Then, since b = /2, and ¢ = 0, Theorem 8 for any z € U(z*, —),
guarantees that Gauss—Newton method converges to z*.
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However, there is no positive integrable function L such that (2.1)
holds. Indeed, we have

1 LT . 1
| 6i(@) i) 1= |z sin 7 —7 2 sin 7] = rpg—y
for z 1 ——*2 k=1,2
= =, 7T = s A= 1,4,
k 2k+1

That is, if there was a positive integrable function L, such that (2.1)
holds on U(z*, r) for some r > 0, then, there exists kg > 1, such that

r o 1/k
L(t) d L(t) d
/0 t)dt > k:ZkO /WHU (t) dt
z llg(@)—g' ) |
> | gi(2) — gi(z,) |12 Z 4(2k+1) = 00,

which is a contradiction.
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tial equations are transformed to a system of ordinary differential equa-
tions with the help of similarity transformations. The resulting nonlin-
ear differential equations are then solved analytically by a purely analytic
technique, namely, homotopy analysis method. The effect of wall suc-
tion/injection on velocity field and temperature distribution is discussed
in detail with the help of graphs.
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1. INTRODUCTION

The MHD flow with continuous heat transfer has many practical applications in indus-
trial manufacturing processes. However, of late, the radiation effect on MHD flow and
heat transfer problems has become more important industrially. At high operating temper-
atures, the radiation effect can be quite significant. Many processes in engineering areas
occur at high temperature and the knowledge of radiation heat transfer becomes very much
important for the design of the pertinent equipment. Nuclear power plants, gas turbines
and the various propulsion devices for aircraft, missiles, satellites and space vehicles are
examples of such engineering areas. When the difference between the surface temperature
and the ambient temperature is large, the radiation effect becomes important. In the aspect
of convection radiation, Viskanta and Grosh [1] considered the effect of thermal radiation

.on the temperature distribution and the heat transfer in an absorbing and emitting media
flowing over a wedge by using the Rosseland diffusion approximation. This approxima-
tion leads to a considerable simplification in the expression for radiant flux. In [1] the
temperature differences within the flow were assumed to be sufficiently small such that
‘ o 35
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T* may be expressed as a linear function of temperature, i.e., 7% = 4T3 T — 3T4 . The
thermal radiation of gray fluid, which is emitting and absorbing radiation in non-scattering
medium, has been examined by Ali et al. [2], Ibrahim [3] ,Mansour [4], Hossain et al.
[5]-[6], Elbashbeshy [7] and Elbashbeshy and Dimian [8] .The thermal radiation effect on
a micropolar fluid was studied by Raptis [9] Recently, Raptis et al. [10] investigated the
effect of thermal radiation on a flow of an electrically conducting viscous fluid. In [10]
the authors considered the rigid stationary plate and computed a numerical solution of the
problem. In the present study we extend the work of Raptis et al. [10] for the case of per-
meable stationary wall. The objective of this investigation is two fold; firstly, to investigate
the effect of suction/injection on velocity and temperature profiles, secondly, to present
complete analytic solution to the governing nonlinear equations. A newly developed ana-
lytic technique, namely, homotopy analysis method [11] is used to get the explicit analytic
solution.

Currently, Liao [11] introduced an analytic technique for highly nonlinear problems in
science and engineering. Liao named it as “homotopy analysis method”. The homotopy
analysis method is very useful to fluid mechanics problems and Liao himself proved the
validity of the method by solving number of nonlinear problems in fluid mechanics (see for
instance [12]-[20]). In recent years, the popularity of the method has grown considerably
and number of researchers have successfully applied it to many nonlinear problems (see
[21]-[29D).

The paper is organized into five sections. Section 2 contains the mathematical descrip-
tion of the problem. Analytic solution of the governing equations and the issue of conver-
gence of the solution series is discussed in section 3. Graphical representation of results
and their discussion is given in section 4 and finally some concluding remarks are given in
section 5.

2. MATHEMATICAL DESCRIPTION OF THE PROBLEM

We consider an incompressible, viscous and electrically conducting fluid bounded by
a permeable semi-infinite flat plate situated at y = 0. The fluid is assumed to be flowing
with uniform free stream velocity U(x) at infinity. A uniform magnetic field of strength
By is applied perpendicular to the plate. After neglecting the induced magnetic field and
the radiative heat flux in the z—direction we get the continuity, momentum and the energy
equations [10]

ou v
2 2
O du_ Pu U 0B

97 By = Va—y2 + dr + T U —u) 2.2)

86 80 k 9% 1 dg,

U F V= — s — — ——, (2.3)
Oz Oy pcpOy*  pep By
subject to the boundary conditions
u=0,v=-Vy, 0 =10y, aty =0,
u—U(x), 0 =0y, asy — oco. 24)

where Vy' is constant suction/injection velocity (positive values of Vi correspond to suc-
tion and the negative values correspond to the constant injection at the plate); p is the
density, v is the kinematic viscosity, o is the electric conductivity of the fluid, 8 is the tem-
perature, k is the thermal conductivity, ¢, is the specific heat of the fluid under constant
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pressure and ¢, is the radiation heat flux.
We assume the velocity of the free stream of the form
U (z) = az + bx? 2.5)

and where a and b are constants.
By using the Rosseland approximation for radiation for an optically thick layer({ [1]-[2])
and the following transformations

a 2bx
n= \/;y u=azf' (n) +ba’g (n), v=—vavf (1) - e (),

2bx

8 = 6o+ (6o — 00) | T (n) + o 7 (], 2.6)
the system( 2.1) - (2.4) reduces to
- f/2 +M(1- f’) +1=0, Q.7
9"+ f9" =3f g +2f'g+M(1-g)+3=0, 2.8)
(3K +4)T" + 3K Pr fT' =0, 2.9)
(BK +4)7" + 3K Pr(—~f'r+gT" + fr') =0, (2.10)
with boundary conditions

f=w, f=0,9g=0,¢9'=0,T=0,7=0,atn =0,

fl—=1,4g —>1,T—1 1 —0,asn— 0. 2.1D)

3. ANALYTIC SOLUTION

We use homotopy analysis method to solve the system (2.7) - (2.11) analytically. Due to
the boundary conditions (2.11) , one can express the solution series of f () ,9 (%), T (n)
and 7 (7) in the following form:

F) =Y 3 Agme™, 3.1)
=0 j=0

g(m =YY Bine™ (3.2)

i=0 j=0

T(m)=Y_ Y Cime™, (3.3)

i=0 j=0

o0 o0
()= Dinie™, (3.4)
i=1 j=0
respectively, where A; ;, B; ;, C;;, and D; ; are constant coefficients. They provided
us with the so-called rule of solution expression, which plays an important role in the
frame work of homotopy analysis method. According to the boundary conditions (2.11)
and the foregoing rule of solution expression defined in (3.1)- (3.4) , we choose the initial
approximations for f (1), ¢ (1), T (n) and 7 (1) of the form

fom)=w—-14n+e™ (3.5)

go(m)=-1+n+e, (3.6)
To(n)=1-e€7", 3.7

or
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To(n) =€ —e M, (3.8)
respectively and the auxiliary linear operators
o3 0
L1= — — %+ 39
1 87]3 87] ) ( )
o? 0
Lo= =+ — 3.10
2 87]2 + 67], ) ( )
which satisfy the properties
L1 [C1+ Cae" + C3e™ "] =0, 3.11)
and
,Cg [04 — C5€~n] = 0, (312)
where C; (i = 1,2,--- ,5) are arbitrary constants, the subscripts 1 and 2 indicate that the

operator corresponds to velocity and temperature functions respectively.
We construct the so-called zeroth-order deformation equations

(1 =p) L1 [F (n;p) = fo (n)] = pha N1 [F ( Pl (3.13)
(1=p) L1[G () — go (n)] = pha N2 [F (m;p) , G (m; p)], (3.14)
(1 =p) L2 [T (m;p) — To (n)] = pha N3 [T (m; ) F(m;p)] (3.15)

(1 —p) L2[A(n;p) — 70 (m)] = pha Ny [F (m;p), G (n;0) , T (m;p), A (s p)],  (3.16)
subject to the boundary conditions

OF (n,p oG (n,p)
F(Oap) = ‘/07 G(O)p) = O? 8—77) |T)=0= O) Tn |77=0: O)
OF (n,p) oG (n,p)

L (0,p) =0,A =0, —2 | _ =1, 8 =1,
( ap) b (Oap) 07 87] |77~00 b 87] |T)—
I'(00,p) =1, A(o0,p) =0, (3.17)

where p € [0, 1] is the embedding parameter, /; and A5 are the non-zero auxiliary param-
eters corresponding to the velocity and temperature profiles respectively and the nonlinear

operators N1 [F (n;p)], N2 [F (n;p), G (n;0)], N3 [T (5 p) , F (n;p)] , and
Ny [F (n;p),G (m;p),T (n;p) , A (n; p)] are defined through

BF _0°F [OF\? OF
N [F == - .
[F (m;p)] = ag,JrFan2 (877) +M(1 8n>+1’ (3.18)
_9G  8G 9F 8G 82 e
(3.19)
o°T or
N3 [T (m;p), F (n;p)] = 3K +4) s + 3K Pr Fa ; (3.20)
82A
Ny[F (n;0),G (n;9),T (m;0) , A (n;p)] = (3K +4) - o
+3K Pr <—8—FA+G@: +F8A (3.21)
F) an on

When p = 0 we have the initial guess approximations
F(m,0)=fo(n), G(m;0) =go(n), T (n;0) =To (), A(m;0)=70(n). (3.22)
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When p = 1 equations (3.13 -3.17) are the same as (2.7 -2.11) respectively, therefore at
p = 1 we get the final solutions

Fm)=fm,Gm)=gm),Tm1)=Tm), Am)=10). (G23)

The initial guess approximations fq (17), go (1), To (), and 7o (), the linear operators
L1, L2 and the auxiliary parameters f; and hy are assumed to be selected such that equa-
tions (3.13 — 3.17) have solution at each point p € [0,1], and also with the help of
Maclaurin’s series and due to eq. (3.22), F (g;p), G (n;p), T (7;p) , and 7 (1;p) can
be expressed as

F (n;p) = fo (n) + éfk (m) p", (3.24)
G (1;p) = 9o (n) + igk (m) 2", (3.25)
T (m;p) = To (n) + ZT (m)p (3.26)
A(n;p) =70 (1) + ;Tk (m) p", (3.27)

where
1 8*F (n;p) 1 %G (n; p)
fe(n) = 0ok lp=0, gk () = W o |lp=0,

1 6%T 1 8%A (n;
(1) = 5 ok by 7 (1) = g [y

Assume that the auxiliary parameters %, and h; are so properly chosen that the series (3.24)
-(3.27) are convergent at p = 1, then due to (3.27) we have

(3.28)

fm)=folm+ i fm (n), (3:29)
)+ i gm (n), - (3.30)
T(n)=To(n)+ i T (n), (3.31)
=75(n) + Z Tm (7). (3.32)

Equations (3.29) -(3.32) provide us with a relatlonshlp between the initial guess approxi-
mations fq (1), 90 (1) , To (1) , and 7 (1) and the unknown solutions f (), g (n), T (n),
and 7 (n) respectively. In order to get the governing equations for f,,, (), gm (1), Tm (1)
and 7., () (m > 1), we first differentiate m times the two sides of egs. (3.13) -(3.17) with
respect to the embedding parameter p at p = 0 and then divide them by m!. In this way we
get

El [fm - mem—l] =mhFPn, (7’) ) (3.33)

El [gm - Xmgm—l] = thm (7’) ) (334)

£2 {Tm - Xme—l] = h2Rm (7’) ’ (335)
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Ly [Tm - Xme-l] =W, (77) s (3.36)
with the boundary conditions

fm(0)=0, f,(0)=0, g,,(0)=0, T (0)=0, 70 (0)=0,
frm(00) =0, gp,(00) =0, Tin(00) =0, 7 (00)=0, (3.37)

where

m—1
Pm(ﬂ):f'" Mfm 1+(1_Xm M+1 +Z fmlk _frln—l—k Ilc]v
k=0

(3.38)
Qum (1) = gm—1 — Mgy, + (1 — xm) (M +3)
m—1
+ Z [fr—1-k9K — 3frm_1_k9k + 2fm_1_ 19k , (3.39)
k=0
m—1
R (n)=BK+4) Ty +3KPr Y fm_1-4T}, (3.40)
k=0

m—1
Wi (n) = BK +4) 7in_ + 3KPr Y [fm1-k7h + gm-1-kT4 — frn_1_kTk] »
k=0

(3.41)

and, for k being any integer

xe =0 if k<1,

=1 if k> 1. (3.42)
We emphasize here that eqs. (3.33) -(3.36) are linear for all m > 1. Also, the left-hand
sides of all (3.33) -(3.36) are governed by the same linear operators £; and Lo, for all
m > 1. These linear equations can be easily solved by means of symbolic computation
software such as MATHEMATICA, MATLLAB, MAPLE and so on. We solve the system

((3.33) -(3.37) for first few values of m and find that the solution expressions for f,,, (1),
gm (1), Ton (1) , and 7,,, () can be written as

2m422m+42—n

Z Z ag, ,nle ™™, (3.43)

n=

2m+422m+42—n

gm(m) = Y b %™, (3.44)
n=0 =0

2m+22m+2—n

Z Z 7, e, (3.45)
q=

2m+22m+2—-n

Z Z dg, ,nle”™. (3.46)

In this way we get the explicit analytic soluuon

M 2m+22m+2—n

:A}llnooz > Z ag, nle™™, (3.47)

m=0 n=0
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M 2m+22m+2—n

(n) = Jim DX D b e, (3.48)

m=0 n=0 q=0
M 2m+22m+42—n

:A}linooz Z E g nle”™, (3.49)

m=0 n=0

M 2m+22m+42—n

:A}linooz > Z i ane” ™, (3.50)

m=0 n=1
of the original eqgs. (2.7) -(2.10).
Therefore, at the Mth-order approximation, the solution can be expressed as follows
M 2m+22m+42-n

AN D ad %™, 3.51)

m=0 n=0 q=0

M 2m+22m+42—n

SNy Z be, %™, (3.52)

m=0 n=0

22

M 2m+22m42—n
Tm~Y > Y o n%™, (3.53)
m=0 n=0 q=0
2m+22m+2—n
Z > Z dg, ,nle™"™ (3.54)
m=0 n=1
As mentioned by Liao [11] that whenever the solut1on series obtained by homotopy anal-
ysis method converges it will be one of the solution of the original equations. The conver-
gence of the solution series depends upon the choice of initial approximations, the auxiliary
linear operators and the nonzero auxiliary parameters. Once if the initial guess approxi-
mations and the auxiliary linear operators have been selected then the convergence of the
solution series will strictly depend upon the auxiliary parameters only. Therefore, the con-
vergence of the solution series is determined by the values of such kind of parameters. The
admissible values of the parameters h; and 75 are determined by the so-called i—curves.
In order to find the allowed values of A; and Ay to make the series (3.47) -(3.50) convergent
we have plotted the i—curves corresponding to " (0), g’ (0), TV (0), and 7/ (0) in figs.
1and 2.

In fig. 1, the i—curves have been plotted for f (n) and g () . Notice that for i; €
(—0.16,—0.12) both curves have their line segments parallel to the fi; —axis. If 7 is
chosen from this interval, then the series (3.47) and (3.48) will converge, also our analysis
shows that these series are convergent for Ay = —0.14. Similarly, the series (3.49) and
(3.50) are found to be convergent at a same value of fi; = —0.10. To show that the series
(3.47) -(3.50) are uniformly convergent series, we have calculated the differences between
their successive terms at particular orders of approximation (see table 1). We have define
the successive absolute differences at 7 = 0 in the following way

A_f//_|f//_ 1" |
) - ) 1—-1]>
A lgl - gl 1

AT =T} —T{_1|,
AT = }7'2' — T{_lf )
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-From table 1 it is clear that by increasing the order of approximation the contribution
of the higher order terms is decreasing and after a certain order of approximations the
contribution of the next terms becomes negligible which confirms the convergence of the
solutions series.

4. GRAPHICAL RESULTS AND DISCUSSION

To see the effect of wall suction/injection on velocity and temperature we have plotted
the graphs. In figs. 3 and 4 the velocity f” is plotted against r; for different values of suction
and injection parameter w. It is observed that the boundary layer thickness decreases by
increasing the suction velocity and the effect is totally reversed in the case of injection,
increasing injection at the wall causes to increase the layer thickness. In fig. 5, it is shown
that there is a direct effect of suction on the velocity f (1) . By increasing suction at the
wall the velocity f (1) also increases at the plate. Similar effect of suction/injection is
observed on the velocities g () and ¢’ (1) as shown in figs. (6) — (8) . However, it is noted
that the suction/injection effects are strong in f () and f’ () as compared with g (n) and
g ).

In figs. 9 and 10 the temperature T" (1) is plotted against n for different values of the
suction and injection velocity respectively. Clearly, the thermal boundary layer thickness
decreases by increasing w and increases by decreasing w as shown in figs. 9 and 10.
Similar effects of suction are shown in fig. 11 for the temperature 7 (77) .

5. CONCLUDING REMARKS

In this communication we investigated the effect of suction/injection on MHD viscous
flow with thermal radiation. Explicit purely analytic solution for velocity and temperature
distribution are obtained by homotopy analysis method. The solution is explicit and to-
tally analytic valid for all values of the dimensionless parameters involved in the problem.
Convergence of the solution has been shown through a table of absolute differences of the
successive terms of the solution series at different orders. The effect of suction is to de-
crease the boundary layer thickness and the thermal boundary layer thickness whereas the
effect of injection is reverse to it which is in accordance with the results present in liter-
ature. We also remark here that the homotopy analysis method is a very useful analytic
technique to solve highly nonlinear problems. ‘
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Table 1: Successive differences at different orders.

FIGURE 1. h—curves corresponding to the velocity components.

Table 1
Fi=—0.14,Fi, = 01, M =05, w=05K=05Pr=07,7=0
1 Aif” Aig” AZT/ Ai'r'
5 10.05623560 | 0.13780800 { 0.014116700 | 0.023131500
10 | 0.02579640 | 0.05093700 | 0.005753070 | 0.002770360
151 0.01129380 | 0.02010250 | 0.000430896 | 0.000286050
20 | 0.00510152 | 0.00835626 | 0.000204585 | 0.000440658
251 0.00232260 | 0.00359375 | 0.000024761 | 0.000014915
M=05w=10
5t
4
S 3
o
S 2
-
1 L
0
-1
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FIGURE 2. h—curves for temperature.

FIGURE 3. Effect of constant suction on the velocity component f* ()
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h=-0.14 M= 05

FIGURE 4. Velocity component f’ (n) in the case of constant injection.

ri=-014 M=03
10 . .

Y]

FIGURE 5. f (n) for different values of the suction parameter w. "
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s=-014d M=05
] i
08t
206
o
04t
— w=00
02t — w=05
T w=4l
0 o W= :
0 1 2 3 4

FIGURE 6. Variation of the velocity component ¢’ () for different val-
ues of the suction velocity w.

FIGURE 7. Injection effects on the velocity ¢’ (1) .
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FIGURE 8. g (n) for different values of the suction parameter w.
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FIGURE 9. Temperature profiles at different w.
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FIGURE 10. Injection effects on the temperature distribution.
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FIGURE 11. Effect of constant suction on 7 (77) .
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Abstract.In this paper we give a refined upper bound for unit, or smaller
intervals and refinement of Hermite Hadamard Inequality for s—convex
functions in second sense. We also establish several Hadamard type In-
equalities for differentiable and twice differentiable functions based on
concavity and s—convexity with applications for some special means.
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1. INTRODUCTION

Let f : I C R — R be a convex mapping defined on the interval I of real numbers and
a,b € I, with a < b. The following double inequality:

@ # I C R, is said to be convex on [ if inequality

flz+ (1 -t)y) < tf(z) + (1-1)f(y)

holds for all z,y € I and ¢t € [0, 1]. Geometrically, this means that if P, Q and R are three

distinct points on graph of f with Q between P and R, then Q is on or below chord PR.

In the paper [6], H. Hudzik and L. Maligranda considered, among others, the class of
51
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functions which are s—convex in the second sense. This class is defined as follows:
A function f : [0, 00) — R is said to be s—convex in the second sense if

fEz+(1-t)y) < ¢° f(z) + (1-1)° fv) (1.2)

holds for all z,y € [0, 00), t € [0, 1] and for some fixed s € (0, 1]. It may be noted that
every l-convex function is convex. In the same paper [6] H. Hudzik and L. Maligranda
discussed a few results connecting with s—convex functions in second sense and some
new results about Hadamard’s inequality for s—convex functions are discussed in [1, 2, 8],
while on the other hand there are many important inequalities connecting with 1-convex
(convex) functions [4], but one of these is the classical Hermite-Hadamard inequality de-

fined by [10]
a+b 1 b f(a) + f(b)
1(55) <ita [ fas <t

2

for [a,b] C R.
In [5], S. S. Dragomir et al. proved a variant of Hermite-Hadamard’s inequality for
s—convex functions in second sense.

Theorem 1. Suppose that f : [0,00) — [0, 00) is s—convex function in the second sense,
where s € (0,1], and let a,b € [0 00),a < b Ife Ll[a b], then the following inequality
holds
_ +b 1 f(a) + f(b)
g lp (80} < 2 R ALREACY 1.
(%) <5t [ s < O 3

The constant k = ;ﬁ is the best possible in the second inequality in (1.3). Their result
was improved in [7], where Jagers gave both the upper and lower bound for the constant

¢(s) in the inequality
a+b
cs) f ( > — / flz)dz.
He proved that

95t 1 o1 (25— 1\ T 2l _9e-l
———— < ¢fs) £ 25F <
s+2 = - s - s+1

In [3, 4] S. S. Dragomir et al. discussed inequalities for differentiable and twice differen-
tiable functions connecting with the H-H Inequality on the basis of the following Lemmas.

-

Lemma 2. Let f : I C R — R be twice differentiable function on I° with " € L'[a, ],
then

b 1
f(a);f(b) _bia/a f(@)dz = (b;“)2/0 (1 —1) f"(ta+ (1 - t)b) dt.

Lemma 3. Let f : I C R — R be differentiable function on I°, a,b € I° with a < b and

f' € LYa,b], then
£) [f’ (ta+ ¢l —_t)a;b> +

f(a+b>
f (tb+(1—t)a;b)} dt.
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We give here definition of Beta function of Euler type which will be helpful in our next
discussion, which is for z,y > 0 defined as

1
Blz+1,y+1) =/0 (1 —t)Y dt.

This paper is organized as follows. After this Introduction, in section 2 we discuss some
s—Hermite Hadamard type inequalities for differentiable functions, in section 3 we give
applications of the results from section 2 for special means and in section 4 we will dis-
cuss refinement of s—Hermite Hadamard inequality and its refined upper bound for unit,
or smaller, intervals.

2. INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS

Theorem 4. Let f : [ — R, I C [0,00), be a differentiable function on I° such that
f € LY{a,bl, where a,b € I,a <b.If| f |2 is s-convex on [a, b] for some fixed s € (0,1]
and q > 1, then

a+b
()t e
o i S @F + s+ I (o
- {(s+1)(5+2)}%
3 (LSO [+ 1) | (242 )
{(s+1)(s+ 2)}4

- o} {(ﬂ(sﬂ 2)If (@) + Bls+2,1) 1f ( +b>

Q15N

).
)]

(ﬂ(5+1 DU ()19 8(s+2,1) ‘f (a+b>

Proof. By Lemma 3

‘f<a+b>
< (b—;‘—”)—[/o t)}f (ta+(1—t)a+b>‘dt+

/01 l—t)lf (tb+(1—t)a+b)'dt} (22)
r(50))

| f'| is s—convex on [a, b] for t € [0, 1]

‘f (ta+ 1—t)—+—b)' < tslf'(a)|‘+(1—t)s
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/01(1—t) 7 (ta+(1—tja;rb)' dt

1
a[/ £5(1—t)dt + f’(a;rb> /Ol(l—t)1+3dt

Bls +1,2) |/ (a)] + AL, s +2) ‘f (Hb)!

(f'(a)| + (s +1) | £ (2£2)]
(s+1)(s+2)

| /01 1-1) ‘f’ (ta+(1—t)a;b)| dt

= /1 (1—t)"i(1—1)
0

By Holder’s Inequality for ¢ > 1 with p = %

/01(1—15) f (ta+(1—t)a;_b>
< (/01 1) ‘f (m+ (1-1)° )
:2—%</01(1—t) <ta+(1—t)

2 [If’( Dl + (s+ 1|7 (54)]"
(s+1)(s+2)

IN

Now

'<ta+(1—~t)a_2'_b>l dt

dt

o) ([o-0s)
)

1
q

VAN

(2.3)

} .

Q=

27} i@ e +1,9) + ps+ 2 |1 (457

Analogously
/Ol(l—t){f’<tb+(1_t)a;rb> dt
e+ s+ 1) | (e :
=" { (s+1)(s+2) : 2.4)

2} [;f ()75 +1,2) + B, 5+2)4f (a“’) }
By using (2.3) and (2.4) in (2.2) we get (2.1). 0

Theorem 5. Let f : [ — R, I C [0,00), be a differentiable function on I° such that
f' € L'[a,b], where a,b € I, a < b. If| f' |2 is concave on [a,b] for ¢ > 1 withp = =4,

then
(2ot o] S () ()]
(2.5)
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Proof. Similarly as in Theorem 4 by using Hélder’s Inequality for ¢ > 1 withp = %7 we
obtain

/Olu—t)

2

(/Ol(l—t)f’dt)% (/01 i <ta+(1—t)a;b)

(p+1)"7 </01 Ji (ta+ (1—t)a—;b)

| f' |9 is concave on [a, b], by Integral Jensen’s Inequality (cf. [9]) we obtain

/01 f’(ta+(1—t)a;b>th - /Olto f’(ta+(1—t)a;b>
(/1 todt) P (fol (ta+ (1 - t)2td) dt)
0

( oyt dt)

([ (v

f’(ta+(1—t)a+b>idt

IA

a N3
dt>

g \3
dt> 2.6)

q
dt

q

IA

_ ‘f, (3a:b) “ o
Analogously
/01 f’(tb+(1—t)a;b>th < lf'(“z%)q 2.8)
By using (2.6) — (2.8) in (2.2) we get (2.5). 0

Theorem 6. Let f : I — R, I C [0,00), be a differentiable function on I° such that
f € L'a,b], where a,b € I,a < b. If | f'|? is s—convex on [a, b] for some fixed s € (0,1]
andq > 1 withp = Eg_l’ then

(55 [ e
£ () [(rr-

(1o +
()

(iror+|r (52)

IA

,a—l—bq%
()
,fa+b
(%)

a\ 7
> } 2.9)

IA
—
o
>
~—
[ &)
| —|
G
Sy
—
>
~—
S
._+_

qﬂ
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Proof. We proceed similar to proof of Theorem 5.
By s—convexity of | f/|? we obtain

1 ' 7 (a+b) |9
: a+b /@7 + [ (45)]
— < . .
/0 f<ta+(1 niee ) dt < — @.10)
Analogously ,
1 ' 1 (a+b) |9
a+b lF/ ()1 + | £ (48]
tb+ (1 —t¢ dt < . 2.11
[ (e a-nt) | e KRS @)
By using (2.10), (2.11) and (2.6) in (2.2) we get (2.9).
And the second inequality follows from the facts
1
s € (0, 1]andq>1wehave(+1)q <1 a

Theorem 7. Let f : I — R, I C [0,00), be a differentiable function on I° such that
f € La,b], where a,b € I, a < b. If| f' |7 is s—concave on |a,b] for some fixed
s€ (0,1 and g > 1 withp = E ,

)

(b— s=1 [
_— q
Alp + 1) g
Proof. we proceed similarly as in Theorem 6.
By s—concavity of | f’|? we obtain

/01 f’(ta+(1—t)a;rb)q f,<3a:b>q
[l (osa o) s o (42)

Now (2.12) is immediate from (2.2). ad
Variants of these results for twice differentiable functions are given below. These can be
proved in a similar way based on Lemma 2.

(=22

r(e52)]

dt < 2571

Analogously

dt < 2571

Theorem 8. Let f : I — R, I C [0, 00), be twice differentiable function on I° such that
J" € L[a,b],where a,b € I,a < b.If | f"|? is s—convex on [a, b] for some fixed s € (0, 1]
and g > 1, then

f@+f®) 1 [,
3 _b—a/a flz)dz

_ 0-a) [lf”(a>|q+|f”<b>lq :
= 2X6% (s+2)(8+3)
= % 1B(s +2,2){] £"(a) [ + | (0 170}

Theorem 9. Let f : I — R, I C [0,00), be twice differentiable function on I° such that
f" € La,b], where a,b € I, a,b. If | f" |9 is concave on [a,b] for ¢ > 1 withp = =

then
fla) + f(b) T (b
2 _b—a/a f(@)de| <

—a)?

g <a+b)l[ﬂ(p+1p+1)]



Hadamard-type inequalities for s —convex functions I.... 57

Theorem 10. Let f : I — R, I C [0,00), be twice differentiable function on I° such
that f" € L'[a,b], where a,b € I,a < b. If |f"|? is s—convex on [a, b] for some fixed
s € (0,1] and g > 1 withp = %1, then

‘f()+f® _a/ i

2
(b—a)®
2

15 ()| + £ (8|97 (s + 1) "7 [B(p + 1,p + V)]

Theorem 11. Let f : I — R, I C [0,00), be twice differentiable function on I° such
that f" € L'[a,b], where a,b € I, a < b.If| f" |9 is s—concave on [a, b] for some fixed
s€ (0,1 andq > 1 withp = —3—1, then

fla) + £(b)
—a/f )dz

5 <270 (b—a)?

(a+b)l[ﬁ(p+1 p+1)P.

Remark 12. For s = 1, relations (2.1), (2.5), (2.9) and (2.12) provide the right estimate
of left classical Hadmard difference, that is, the new improvements of left Hadamard in-
equality.

Remark 13. For s = 1, relations in Theorems 8-11 provide the right estimate of right
classical Hadmard difference, that is, the new improvements of right Hadamard inequality.

3. APPLICATIONS FOR SPECIAL MEANS

Let us recall the following means for two positive numbers.
(1) The Arithmetic mean

A= Ala,b) = GTM, a,b>0

(2) The Harmonic mean

2ab

H = H(a,b) = PR a,b>0

(3) The p—Logarithmic mean
a, ifa=1b; a,b>0
Ly, = Ly(a,b) = ppl_ gptt H .
oS |” . ifatb
(4) The Identric mean
‘ a, ifa=2"5; a,b>0
I=1{ab) = =
(@.5) L(%)™, ifasb )
(5) The Logarithmic mean
a, lfll=b, a,b>0
L=M%m={ ba__ ifq£b,

Inb—Ina?
The following inequality is well known in the literature:
H<L<I<A

It is also known that L, is monotonically increasing over p € R, denoting Ly = I and
L_,=L.
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Proposition 14. Letp > 1,0 < a < band q = -£-. Then one has the inequality.
[H™'(a,) = L7H(a,0)] < 5 3b) A4 (a3 p39) (3.1)
Proof. By Theorem 8 applied for the mapping f(z) = 1 for s = 1 we have
1/
%—%—%_lnb—lna <(b—a)2 a34+,,232 !
2 b—a ~ 2x6l/p 12 ’
which is equivalent to (3.1). O

Another result which is connected with p—Logarithmic mean L,(a,b) is the following
one:

Proposition 15. Letp > 1,0 < a < bandq = %, then

- — )2
|A(ap,b1’) — Li(a, b)| < p_(p%@_ Al/e <a4(p—2),b4(p—2)>

Proof. Follows by Theorem 8, setting f(z) = z? for s = 1. O
Another result which is connected with p—Logarithmic mean L,(a,b) is the following
one:

Proposition 16. Lerp > 1,0<a < bandq= p—%, then

Afa,b) _ 3-1/q
I(a,b) = P | 2

Proof. Follows by Theorem 4, setting f(z) = —Inz for s = 1. ad

{(a‘q +2A7Y(a, b))l/q + (577 + 2479(a, b))l/q}]

Remark 17. By selecting some other convex functions, in the same way as above, we can
find out some new relations connecting to some special means.

4. REFINEMENT AND NEW REFINED UPPER BOUND FOR S-HERMITE HADAMARD
INEQUALITY

To find new refined upper bound we integrate (1.2) w.r.t t over [a, b] C [0, 1]

1 zb+(1-b)y
— @< (6-a)Lieb) f() + L(1-a1-b) f@)],
Y Jeat(l-a)y

where,
)= 2k p>0
B-a)pr1 FTOPST

For better right bound of Hermite Hadamard Inequality for s-convex function in second,
we compare the above bound with usual one, f (a)if ®)

Suppose the above is less than the usual upper bound, that is,

sH1_ o+l 1—b)s+L _(1_q)5+!
Pt fg) - =BT Aal gy < SO

or, [Pt —a*T f(2)+[(1-a)** — (1 -0)" M f(y) < f(2) + (W)
Consider b = a + A for A > 0 such that its cube and higher powers approaching zero.
[(a+ X = a1 f(2) +[(1 =)™ = (A —a = X)) fy) < f(2) + f(v)
So, all we need, for the above being true, is that

(@a+ )t —astl <1 (1-a)y ! —(1-a-X)**1<1

s+1
ie, a*t1 [(1 -+ %)SH — 1] <1 (1 —a)st? [1 — (1 — ii—) ] <1

a —_
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By binomial expansion,
as+1 I:_S-i-Tl X+ 3(;:’21) A2] < 1’ (1 _ a)s+1 [s

1 (s+1)
X - ;(1 L Az] <1

as—1)2 1 . s s—1 2 s 1
From (4.1) we get A g 1.

This means we have improved the upper bound of Hermite Hadamard inequality for s—convex
function in second sense, when the distance between a and b is almost one. The most in-
teresting thing is that all linking work is with the interval [0, 1] better than other. This
discussion gives the following result.

Theorem 18. Let f : [a,a+ ] — R be s—convex function in second sense for 0 < A < 1,
0<a<landse (0,1, then

rr (B52) < 3 [T sas o [t v era) s+
[-50-a 3+ 1 -a 2} 5w)].

The following result is related with the improvement of inequality (1.3).

Theorem 19. Suppose that f : [0,00) — [0,00) is an s-convex function in the second
sense, where s € (0,1], and let a,b € [0,00), a < b. If f € L[a, b], then

fa i _a/ fa@yds > | [ @)+ (1 -0 0] dt-

/01 | fta+(1—1)b)| dt @2)

/f(z)dr 9o lf(““’)

1 1
—/ | fEa+ (1 —8)b)+ fEb+ (1 —t)a)| dt+
0
Proof. From inequality (1.2)

23
a+b
(e
t* fla) + (1=1)°f(b) — fta+ (1 —1)b)
=t fla) + 1-8)°f(b) - f(ta+(1-1)b) |
>t fla) + A=) fO®) | = | fEa+(1-8)b)|].

Integrating w.r.t t over [0,1]

s+1 /fta+ (1—-t)b)dt

+ 1= f®) | — | flta+(1—-2)b) || dt.

and

> 28—1

v
c\
=

v

t/ (6 (@) + (1= ) F®)] - |f(ta+ (1 - O B)[ ],
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which is equivalent to (4.2).

Again by definition .
f(x;ry> < f(m);f(y).
f(w);rsf(y) B f<3¥> _ (f(w)tf(y) _f<w42ry>'

v

) -5)

Bysettmg,xr—)ta—}-(l—t)b and y—tb+(1—t)a for te€]0,1], wehave

flta+ (@1 =)b)+ f(tb+ (1 —t)a) f <a+b) >
a+b
)]
Integrating w.r.t ¢ over [0,1]

5
%[/01 f(ta—}—(l—t)b)dt—}—/ol f(tb—}—(l—t)a)dt] —f(“;rb> >

I : b ()l

From here we get (4.3). ]
Acknowledgement : We thank the careful referee and Editor for valuable comments
and suggestions, which we have used to improve the final version of this paper

Hf(ta+(1—t) b)+ f(tb+(1—t)a)
28
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1. INTRODUCTION

As the development of singular integral operators, their commutators have been well
studied (see [1-4]). Let T be the Calderén-Zygmund singular integral operator, a classi-
cal result of Coifman, Rocherberg and Weiss (see [2]) states that commutator [b, T|(f) =
T(bf)—bT(f)( where b € BMO(R™))is bounded on L?(R™) for 1 < p < oc. In [4][11-
13], the sharp estimates for some multilinear commutators of the Calderén-Zygmund sin-
gular integral operators are obtained. The main purpose of this paper is to prove the sharp
function inequality for some multilinear commutators related to certain integral opera-
tors. By using the sharp inequality, we obtain the weighted L?-norm inequality for the
multilinear commutators. The integral operators include the Littlewood-Paley operator,
Marcinkiewicz operator and Bochner-Riesz operator.

2. NOTATIONS AND RESULTS

First let us introduce some notations (see [3][14][15]). In this paper, ¢ will denote a
cube of R™ with sides parallel to the axes, and fora cube Qlet fo = |Q|™! [, f o z)dz and
the sharp function of f is defined by

#(x dy.
£4(0) = 5w 7 1700 fald
It is well-known that (see [3])

£*(@) ~ sup inf, - @ / £(y) - Cldy.

Qoz ceC
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We say that b belongs to BMO(R"™) if b# belongs to L°(R™) and define ||b||grpro0 =
||6#|| .o . It has been known that (see [14])

||b — bargllBmo < CE||bl|Baro-
Let M be the Hardy-Littlewood maximal operator, that is

M()@) = swplQl [ 1)l
z€eQ Q

We write that M,(f) = (M(|f[P))*/? for 0 < p < oo. For b; € BMO(R™)(j =
1,---,m), set

|Ibllzro = [ ] Ilbsl1Ba0-

j=1

Given some functions b; (j = 1,--- ,m) and a positive integer m and 1 < j < m, we

denote by C}™ the family of all finite subsets 0 = {o(1),- - -,0(j)} of {1, -+, m} of j

different elements. For o € CT*, set 0¢ = {1,---,m}\o. Forb = (by,---,by) and
= {0(1), - 0(j)} € CP set by = (by1),- " v bo(j))s bo = bo(r) * * * bo(j) and

8o 112310 = lIboyllBat0 * - - |[bo(sy ]| BMO-

In this paper, we will study some multilinear commutators as follows. -

Definition 1. Suppose b;(j = 1, - ,m) are the fixed locally integrable functions on R™.
Let Fy(z,y) define on R™ x R™ x [0, +00). Set

F(f)(@) = / Fy(e, ) (4)dy

L0

and

/ ) H Y)Fu(z,y)f(y)dy,

for every bounded and compactly supported function f. Let H be the Banach space
(H,|| - ||) such that, for each fixed z € R™, F;(f)(z) and F(f)(z) may be viewed as

the mappings from [0, +o0) to H. The multilinear commutator related to F} is defined by
Ty(f)(@) = |FLy (@),

where F; satisfies: for fixed e > 0

1Fi(z,y)l| < Clz —y|™"
and
|1Fe(y, z) — Fi(2, )| + || Fe(z,y) — Fi(z, 2)|| < Cly — z[f|z — 2|77,
if 2|y — 2| < |z — z|. We also define that T'(f)(x) = ||Fy(f)(z)l|.
Note that when by = - - + = by, Ty is just the m order commutator (see [1][13]). It
is well known that commutators are of great interest in harmonic analysis and have been
widely studied by many authors (see [1-2]{4][11-13]). Our main purpose is to establish the

sharp inequality for the multilinear commutator.
Now we state our theorems as following.
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Theorem 2. Let b; € BMO(R™) for j = 1,--- ,m. Suppose that T is bounded on
Li(R™) forall 1 < q < 0o. Then for any 1 < r < oo, there exists a constant C > 0 such
that for any f € C§°(R™) and any z € R™,

(T5(N)*(2) < ClIbl | maro (Mr(f)(l) +y Y M(Ty, (f))(I)) :

j=1 UECJ’"

Theorem 3. Let b; € BMO(R") for j = 1,--- ,m. Suppose that T is bounded on
LA(R") forall 1 < q < co. Then T is bounded on LP(R™) for 1 < p < co.

3. PROOFS OF THEOREMS

To prove the theorems, we need the following lemma, which is well known.

Lemmad4. Let1 < g < o0, b; € BMO(R") forj=1,--- k. Then

IQI/ H"’ Qldy<CH||b Mo

j=1

and

l/q A

=1

Proof. Proof of Theorem 1. It suffices to prove for f & C’O (R™) and some constant C,
the following inequality holds: ‘

|Q|/ I T5(f) (@) — Coldz < C|bl|zmo (Mr(f)(i)w“Z > M(T;, (f)(@)) :

j=1oeCp

Fix a cube @ = Q(zg,d) and Z € Q.
We first consider the Case m = 1. Write, for f1 = fx2¢ and f2 = fXx(2Q)<»
FPH () (@) = (51(2)=(01)20) Fe () (@) = Fo(b1~ (b1)2) f1) (2) = Fe((b1—(b1)20) f2) ().

Then,

|Tb1 (

)(@) = T(((b1)2¢ — b1) f2) (o)
IF7(

H@) = 1F(((b1)2g — b1)f2) (o)l
Y (£) () = Fe(((b1)2q — b1) f2) (o)
[1(b1(z) = (b1)2@) Fe () (@)]| + [1Fe((b1 — (b1)2@) f1) (@)l

+[F((b1 — (b1)2q) f2)(z) — Fi((b1 — (b1)2q) f2) (o)l
A(z) + B(z) + C(x).

il

IA A

i

For A(z), by Holder’s inequality with exponent 1/7 + 1/7' = 1, we get
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1
@ /Q A(z)dx

1
- & /Q 1b1(z) — (b1)2|IT(f)(z)|do

(e Jo 0~ (ol ) " (@ Lo @)rds ) :
Cl|bil|BMoMA(T(f))(Z).

For B(z), choose s,q such that 1 < s,¢q < oo and r = g¢s, by the boundedness of T' on
L9(R™) and Holder’s inequality, we obtain

1
@LB(x)dm

_ ﬁ /Q [T((by — (b1)2g) f1) ()] dz

INA

IA

< (ﬁ/n[T((bl - (bl)zQ)fX2Q)($)]qdm)l/q
< Cim ( JRCCE (bl)m|q|f<x)><2;<x‘)iqu) v

1/qs’
cigimseites (o | i) - (bl)mmx) N

(s L) ™

< ClkllamoM(f)(%).
For C(z), by Minkowski’s inequality, we obtain, for z € Q,

AN

C(z)

'/Rn(bl(y) - (b1)2Q)f2(y)(Ft(x,y) - Ft(xo,y))dyH

IA

/( o 10— @20l @R ~ B, )y

C/ [b1(y) — (b1)2Q||f(y)|%dy

IA

AN

- / ba(6) — (eo)sell ) 2y

HIQ\25Q

. 1/r
C 2— € - - T
kzzjl (g Lo V)

(957 g 1200 = Gl )

O k2| byl [ 3as0 Mo (1)(@)

k=1
Cllb1l| Bao M- (f)(Z),

AN

AN

IA
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thus

1 .
|HI/QC(ac)dac < CllbillBao M (f)(Z).

Now, we consider the Case m > 2, we have known that, for b = (b1, -+ ,by),

Fi@= [ [H(bxm) - bj<y>>} Fi(@,)f (4)dy

= /Rn [(b1(2) = (b1)2@) = (ba(y) = (ba)2)] - - - [(bm(z) — (bm)2@) — (bm (y) —

(b m)zQ)]Ft(w ) f(y)dy
= Y T () — (e / (b(w) — (5)20)0 i, 1) (4)dy
—OUGC'"

= (b(x) = (01)2Q) - - - (bm (@) — (bm)2@) F2(f)(2)
+(= 1)mFt((b1 (b1)2Q) - - - (bm — (bm)2@) ) (=)

+Z > (=)™ (b(z) ~ (b)20)a / (0(y) — b(@))oeFe(z,y) f(y)dy

j=1 ceCcy
= (bu(z) = (br)2) - - - (b () — (bm)2@) Fe(f)(2)
+(— 1)mFt((bl (b1)2q) - - - (bm — (bm)20)f)(2)

+ Z Z ™ 7 (b(z) - (b)2Q)dFt “(f)(z),

Jj=1ceCy
thus -

T5()(@) = T(((br)2g = b1) - - (bm)2@ — bm)) f2)(20)]
IEEH @ = IF(((Br)2q = b1) -+ ((5)2Q — bm) f2) (o)

< |IFE(f) (@) - Fu(((br)ag — b1) - (bm)ag — bm) f2) (o)l
< l(bu(z) = (b1)2g) - -

(bm(2) — (bm)20) F(H (@]
+ 30 Y B(@) — (bm)2g)e Fr (5 (@)

j=1 G’EC;H

+ 1F (01 = (b1)2@) -+ (b — (bm)2@) f1) ()]

+  [[F((b1 = (b1)2Q) - - (bm — (bm)2@) f2)(z) — Fi((b1 — (b1)2q) - -

(b — (bm)2@) f2 )=o)l
= ILi(z)+ L(z)+ Iz(z) + Lu(z).
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For I1(z), by Holder’s inequality with exponent 1/p; + - -+ + 1/p;m + 1/r = 1, where
1<pj<o0,j=1,--+,m, we get

1

1
< @/ [b1(z) — (b1)2g] - - - [bm(z) — (bm)20||T(f)(z)|dz

< <IQ|/ 14(z) = (b;)2al” )wj(lQl/ ) T‘“)W

< C||b||BMoMr(T(f))($)-

For I5(z), by the Minkowski’s and Holder’s inequality, we get

- & / 5 106) - O FF (1@l

j=1oceC*
< l(b(x )o|IT; . (f)(x)|dx
Ll
, 1/’ 1 - 1/r
< C;UecmG%?l / (00) - ®so)ds) (7 [ 1T, (@)
< CZ > lbollsro Me(Ty, (£))(E).

j=1 GECJ’.”

For I3(z), choose 1 < s,q < oo with » = g¢s, by the boundedness of T on L¢(R™) and
Holder’s inequality, we get

1
|22—|/QI3(:c)d:c

1/q
(ﬁ / |T<H<b xw)(x)lqu)

1/q
( / lH(b (@) ~ (b )QQ)fﬂf(:c)xQQ(x)lex)

IA

AN

|Q|1/q

: 1/qs
p 1 ks : ,
C —1/q+1/qs'+1/gs / b — (b s dx
el 501 g L1050 = Gz

3 (|2—1Q| [ is@rees) o

Ol a0 M, (£)(@).

IN

IN
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For I4(z), choose 1 < p; <ooj=1,---,msuchthat1/p; +---+1/pm+1/r =1, we

obtain, by Holder’s inequality,

L) = IR = (0)30) - (b — (bm)a@) f2) (&) — Fil(b1 — (b1)2q) -
(b — (bm)2) £2) (0)
< [ L1500 = o0)20) sl @ Fio) = Flawd
<cf |H<b (1) = Gs)ao)l| ) ool
C T — x|z — 3|~ (*E) ] bi(y) — (Bi)a d
< ;/QWQ\MI ol =l T 50 ~ @oallf i
o’} e 1 . 1/r B
< 0192::12 F (M 2k+1Q|f(y)l dy) |
m 1 o, 1/p;
11;[1 <|7’“+1—Q|’/2k+1 165 (y) — (b5)2¢ de)
< Czkm2—kel—[|lb l|Bmo M (f)(Z)
< ClfllsmoM. (£)(),

thus
ﬁ /Q Lu(z)dz < C|[B]| a0 Me(£) (&)

This completes the proof of the theorem.

O

Proof. Proof of Theorem 2. Choose 1 < r < pin Theorem 1. We first consider the case

m=1, we have

| M(T, (f))HLv < ON(Ts, (1) 2r
CIM(T () e + CIM-(f)llLe
CIT(HllLe + C| Mr(f)|| e
Clflliee + C| fll Lo

Clifllze-

| To, ()] e

IN N AN N IA

When m > 2, we may get the conclusion of Theorem 2 by induction. This finishes the

proof.

4. APPLICATIONS

Now we give some applications of the theorems in this paper.
Application 1.  Littlewood-Paley operator.

Fixed € > 0. Let 4 be a fixed function Wthh satlsﬁes the following propemes

(D)o i iplm)dz =0,
Q@ [P(z)] < CA+ |z|)~C+D), o
@) 9@ +y) — ¥(@)] < Clyl(1 + [2])~+1+2) when2|y| < [a].

O
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The Littlewood-Paley multilinear commutator is defined by

e = ([ IrFn@rd)",
where

F¥(f)(@) = / H(b (@) — b; (&) r(x — v) F)dy

and ¥(x) = t “qp(x/t) fort > 0. Set F(Hy) =7F=* 1/Jt(y) We also define that

dt
s = ([T irners) ",
which is the Littlewood-Paley operator(see [15]). Let H be the space

H= {h: I1A]| = (/Ooo |h(t)|2dt/t>l/2 < oo},

then, for each fixed x € R™, th (f){(z) may be viewed as the mappings from [0, +00) to
H, and it is clear that

gy (N@) =ENO @I, 955 (@) = IFH@)II-
It is easily to see that g, satisfies the conditions of Theorems 1 and 2 (see [5-7]), thus
Theorems 1 and 2 hold for gf,,.
Application 2. Marcinkiewicz operator.
Fixed 0 < vy < 1. Let 2 be homogeneous of degree zero on R" with [,,_; Q(z')do(z’) =
0. Assume that Q € Lip,(S™™!). The Marcinkiewicz multilinear commutator is defined
by

ué(f)(x)=(/o IF”(f)(w)I2dt) ,

where
F3(f)(e) = /| H(b (@) = b)) s ]n)lf(y)
- @ = [ s, 'v
lo—y|<t [T — 9" ’
We also define that

oo ,dt\ /2
wa(@ = ([T IRO@EE)
which is the Marcinkiewicz operator(see [16]). Let H be the space

H= {h |JA| = (/Ooo |h(t)|2dt/t3>1/2 < oo} .

Then, it is clear that

(@) = IFF (D@, malf)@) = IR

It is easily to see that po satlsﬁes the conditions of Theorems 1 and 2 (see [8][16]), thus

Theorems 1 and 2 hold for .
Application 3. Bochner-Riesz operator.
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Letd > (n—1)/2, BS(f)(€) = (1—t2|¢[%)8 f(¢) and BY(z) = t="B%(z/t) for t > 0.
Set

F@ = [ T10:E - b0) B - )6y,
J=1
The maximal Bochner-Riesz multilinear commutator is defined by
B} (£)(@) = sup B3, (£) @)

We also define that :
Bs(f)(@) = sup |BS(£)(z)|

which is the maximal Bochner-Riesz operator(see [10]). Let H be the space H = {h :
[|h|] = sup |h(t)| < oo}, then
t>0

B} . (f)(@) = [|Bsu(H@)l, BL(f)(=) =IBL(F)(@)I.
It is easily to see that Bg,* satisfies the conditions of Theorems 1 and 2 (see [9]), thus
Theorems 1 and 2 hold for B} ,.
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Abstract.Second order dynamic mesh technique is employed to solve gas
dynamic equations which represent the different aspects of hyperbolic
(nonlinear) equations. The value of the density, velocity, pressure and
internal energy of the gas at t= 0.15s are computed using dynamic mesh
technique and uniform mesh method. Their graphical comparison is given
in £gures 1-4. We observe that the dynamic mesh graphs are more smooth
than uniform mesh graphs. Therefore it is clear that the dynamic mesh
technique gives better results than standard uniform mesh method.

1. INTRODUCTION

In this paper we have considered one dimensional gas dynamics equations representing
laws of conservation of mass, momentum and energy along with the equation of state of
the gas. This problem is considered as a case study for solving hyperbolic (non linear) con-
servation laws because it depicts the next level of complexity after the Berger’s equations.
In dynamic mesh technique a £xed number of mesh points move automatically to minimize
the error in the solution. Second order dynamic mesh technique based on equidistribution
principle is used here because it is more effcient than uniform mesh methods for solving
time-dependent partial differential equations.

2. GAS DYNAMICS EQUATION

The one dimensional gas dynamics equations in conservation form are
Continuity equation

o pe+mz =0 2.1
Momentum equation

2
my + [m? n P] -0 2.2)

7
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Energy Equation
m
B + {—(E + P)} =0 2.3)
p z
In vector form, they can be written as ‘
u + [f(w)]z: =0 24)
Where ‘
P N
u= | m |,F(u)= - +p
E %(E + P)

And p stands for density, m for momentum, P for pressure and E is the total energy per
unit volume.

The equation of state for an ideal gas to express the internal energy per unit mass e as a
function of P and p is given by

P
e p(y—l)’7>1 2.5)
Where  is the ratio of specifc heats.
We take v = 1.4, a value corresponding to a diatomic gas.
Bernoullie’s equation is given by

2

m
E= —
ep + 2
Using equation 2.5 it becomes
P 2
EF=—+ m
y—=1 2
m2
P=Kw-1)iEF-— 2.6
v e oo

We solve equations( 2.1), (2.2), (2.3) and ((2.6)) which involves three independent vari-
ables p, m and E, t is time and x are the position coordinates, using the following initial
and boundary conditions.

1.0000 ifx<Q
p(z,0) = | 0.5635 ifx=0
0.1250 ifx>0

m(x,0) = 0 for all

25000 ifx<0
E(z,0)=| 1375  ifx=0
0.2500 ifx >0
p (-0.5,6) = 1.0000, p (0.5,t) = 0.1250
m (-0.5,t) = 0.0000 = m (0.5,t)
E (-0.5,t) = 2.5000, E(0.5,t) = 0.2500
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3. ADDITION OF ARTIFICIAL VISCOSITY

If we solve equation( 2.4) by using £nite differences for ux it reduces to a system of £rst
order differential equations. The RKF45 program can be-used to solve this system under
the given boundary conditions but it has discontinuous solutions. To overcome this diff-
culty artifcial viscosity, a term proportional to uxx is added to the system which makes the

problem simpler. Then the system of equations (2.1), (2.2) and (2.3) becomes ‘

Pt +mz = )\pzz (31)
m2
ms + {7 + P] = AMMge (3.2)
and N
m
Ei+ [;(E + P)] = AEqq (3.3)

and in vector form, it can be written as
up + [F(w)]z = Augg (B34)
With boundary conditions as
p (-0.5,6) = 1.0000, p(0.5,t) = 0.1250
m (-0.5,t) = 0.000 = m (0.5,t) for all ¢
E (-0.5,t) = 2.5000, E(0.5,t) = 0.2500

P M
u=|m | ,Flu)= - tp
E m(E + P)

It is well known that for hyperbolic conservation laws, even smooth initial conditions can
produce solutions which eventually become discontinuous. Hence when we speak here of
a solution of (2.4) we will mean a weak solution. In [6] Lax proves that if the solution u
(x,t;2) of (3.4) converges to a limit %(x,t) as X approaches 07, then %(x,t) is a weak solution
of (2.4). Further Foy [5] proves that the solution of (3.4) do indeed converge if the original
shock waves are weak enough. Therefore the addition of artifcial viscosity will not destroy
the essential character of hyperbolic equations ((2.1)-(2.3)). We take A= 5 x 1074,

4, DYNAMIC MESH:

Case Study.
To apply dynamic mesh technique we write the gas dynamics equation 3.4 as

u =G ) “4.1)
where G = Aug, — [F(u)lg
and we take A =5 x 107*
Finite difference approximation for the £rst and second order derivatives on a moving grid
are given by

Uiyl — Uil 4.2)

5 =
Ti+1 — Ti-1

wit1(Ti — Tic1) — w(Tit1 — Tic1) + wim1(Tip1 — T3)
($i+1 - %')(xi - xi—l)($i+1 - $i—1)

“4.3)

Ugr =

By using transformation
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x=x (§,1), xe[0,1]
x0,)=0,x(1,n=1 _
equation (4.1) reduces to the quasi Lagrangian form as -

. U — @a: =G 4.4)
oz
Using eq (4.2), it becomes ’
s s S PGS (4.5)
Tit+1l — Ti—1

i=0,1,2,...,n
and Gi is the discrete approximation of G. Monitor functions involving higher derivatives
of u(x) are extremely complicated for use, so White [7] recommends to use the arc length

function
M(z,t) =+/1+u2

5. DISCRETIZATION OF MOVING MESH PARTIAL DIFFERENTIAL EQUATION
(MMPDE)

.0 Oz _
+= 5 (5) -

gives the node speed and it will be used to solve the system because it gives better results.
For this purpose equation (5.1) is discretized in space with centered £nite differences on
the uniform mesh.

MMPDE [1]

g="i=0,1...,n
where n is positive integers and by using method of lines.
The discrete approximation of (5.1) is then

: s B (5.2

Where 7 = 1/A and Fi is the discrete approximation of

E=% (Mg—g)at ¢ = ¢i given by

Mi+1 + M;
2(3)°

Tﬁus equations (5.2) becomes

M; + M;_,

2(3)°

E; = (Tig1 — ) — (zi —x; — 1) (5.3)

n2

Z; =5 [(M; + Mii1)@ip1 — (Miy + 2Mi11)z; + (M1 + M)z ] (5;4)
i=1,2,...,n—1 ’

n?

I = Z [(Mz + Mz)ﬂ?z — (Mo + 2M1 + Mz)a?l — 0.5(M0 + Ml)] 5.5

2
.on? _ _ _ -
Ti= oo [(M; + Miy1)iy1 — (Mi_y + 2M; + M)z, + (M1 + M)z 1] (5.6)
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i=2,...,n-2

Ty 1:—‘[05( n— 1+M)_( n— 2+2Mn 1+M):En 1+
(M —2+Mn—1)mn—2] 5.7

where M;is the smoothed form of

01 1/2
M; = [1 + (——“i“ — "‘1’-1) ] (5:8)
Ti41 — T3
Mi must be smoothed in order to obtain reasonable accuracy
Let M; = (A;:)l/z

. k—i

where M} = }CJ;]i_j(Mk)2 (I%)l |
* i+j lke—|

a.ndS = Zk =i—j (l—i-n)
Where 1 > 0 is the smoothing parameter, and j a non-negative integer, is the smoothing
index. The summation is understood to contain only elements with indices between zero
and n. Thus the problem is reduced to solving two sets of equations (4.5) and (5.2). The
initial conditions for xi is a uniform mesh, i.e.

z;(0) = E,z_0123

The boundary conditions being used are £(0) =0 and £(n) =0

The systems of ordinary differential equations are solved using ordinary differential equa-
tion solver RKF45. For calculation a relative and absolute tolerance of 102 is assumed.
After testing various values and combinations for the parameters; 7, J and r the following
values have been chosen since they given the most accurate result:
n=2,J=2and r =103

6. RESULTS

The one dimensional gas dynamics equation is solved using moving mesh method with n
=100 at t = 0.15s. Other dynamic mesh formulations have also been considered. However,
better results were obtained using (5.1).

The values of density, velocity, pressure and internal energy of the gas at t = 0.15s using
dynamic mesh technique and uniform mesh method are given in tables 1-4 and are plotted
together in £gures 1-4. It is observed that the dynamic mesh technique yields equally
accurate results as the uniform mesh method for signifcantly smaller number of points for
the gas dynamics equations considered in this paper.

7. CONCLUSION

In this paper we have used the dynamic (moving) mesh technique for solution of one di-
mensional gas dynamics equation. This technique employs the equidistribution principle.
On investigation it is found that dynamic (moving) mesh technique gives the better results
for gas dynamics equations.



76 Magbool Ahmad Ch and M. Ozair Ahmad

REFERENCES

[1] Magbool Ahmad Chaudhry and M. Ozair Ahmad, Moving mesh method, Research Journal, University of
Engineering and Technology, Lahore, 16 (2005), 1-2.
[2] R.Li, W.B. Liu and H.P. Ma, Moving mesh method with error-estimater based monitor and its application
to static obstacle problem, Journal of Scientifc Components, 21(1) (2004).
[3]1 placeCity Ames, W.F., Numerical Methods for partial differential equations, 3r Ed. Academic, placeState-
New York (1988).
[4] Boor. C. DE., Good approximation by Splines with variables knots II, in Springer Lecturer Notes Series
363, Springer Verlag. placeStateBerlin. (1973).
[5]1 Foy, Linus Richard, Steady state solution of hyperbolic systems of conservation laws with viscosity terms.
Communication on pure and applied Mathematics, 17 (1964), 177-188.
[6] Lax, P.D., Weak solution of nonlinear hyperbolic equations an their numerical computation. Communica-
tion on pure and applied Mathematics, 7 (1954), 159-193.
[71 A.B, White on selection of equdistributing methods for two point boundary problems. SIAMJ. Number.
Anal., 16 (1979), 472-502.
[8] L.R. Petzold, observation on an adaptive moving grid method for one dimensional systems of partial differ-
ential equations. Appl. Number. Math., 3 (1987), 347-360.
[9]1 H. D. Ceniceros and T. Y. Hou, An effcient dynamically daptive mesh for potentially singular solutions,
Journal of Computational Physics, 172 (2001), 609-639.
[10] B.N. Azarenok and S. A. Ivanenko, Application of adaptive rids in numerical analysis of time-dependent
problems in gas dynamics, Comput. Maths. Math. Phys, 40 (2000), 1330-1349.
[11] B.N. Azarenok, Variational barrier method of adaptive grid generation in hyperbolic problems of gas dy-
namics, SIAM Journal on Numerical Analysis, 40 (2002), 651-682.
[12] H.D. Ceniceros and T. Y. Hou, An effcient dynamically daptive mesh for potentially singular solutions,
Journal of Computational Physics 172 (2001), 609-639.
[13] T. Gener and D. Krner, Dynamic mesh adaptive for supersonic reactive Yow Preprint, (2001).



Numerical Solution of Gas i)ynamics Equation using Second Order Dynamic Mesh Technique....

7

Table 1- Density of the gas

X Finite Difference Moving Mesh Absolute Error
-0.500000 1.00000000 1.00000000 0.00000000
-0.400000 1.00000000 1.00000000 0.00000000
-0.300000 1.00000000 1.00000000 0.00000000
-0.200000 0.90522825 0.91599216 0.01076391
-0.100000 0.59331406 0.60146611 0.00815205
0.000000 0.43400938 0.43642349 0.00241411
0.100000 0.42314568 0.42465446 0.00150878
0.200000 0.24555786 0.26980234 0.02424448
0.300000 0.24500000 0.26450688 0.01950688
0.400000 0.12500000 0.12500000 0.00000000
0.500000 0.12500000 0.12500000 0.00000000
Table 2- Velocity of the gas
X - Finite Difference Moving Mesh Absolute Error
-0.500000 0.00000000 0.00000000 0.00000000
-0.400000 0.00000000 0.00000000 0.00000000
-0.300000 0.00000000 0.00000000 0.00000000
-0.200000 0.00565540 0.00000983 0.00564557
-0.100000 0.42905106 0.32891547 0.10013559
0.000000 0.90723119 0.74714813 0.16008306
0.100000 0.92746010 0.92765451 0.00019441
0.200000 0.92742284 0.92746329 0.00004045
0.300000 0.00000000 0.93505693 0.93505930
0.400000 0.00000000 0.00000003 0.00000003
0.500000 0.00000000 0.00000000 0.00000000
Table 3- Pressure of the gas

X Finite Difference Moving Mesh Absolute Error
-0.500000 1.00000000 1.00000000 0.00000000
-0.400000 1.00000000 1.00000000 0.00000000
-0.300000 1.00000000 1.00000000 0.00000000
-0.200000 0.99332728 0.99694026 0.00361298
-0.100000 0.52936241 0.55750428 0.02814187
0.000000 0.31182478 0.3220423 0.01021752
0.100000 0.30312357 0.30311585 0.00000772
0.200000 0.30311914 0.30312362 0.00000448
0.300000 0.10000000 0.30200000 0.20200000
0.400000 0.10000000 0.10000000 0.00000000
0.500000 .0.10000000 0.10000000 0.00000000
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Table 4-Energy of the gas

X Finite Difference Moving Mesh Absolute Error
-0.500000 2.50000000 2.50000000 0.00000000
-0.400000 2.50000000 2.50000000 0.00000000
-0.300000 2.50000000 2.50000000 0.00000000

~-0.200000 2.49522477 2.49854773 0.00332296
-0.100000 2.16122261 221779172 0.05656911

0.000000 1.79618690 1.88824636 0.09205946

0.100000 1.79089372 1.78172459 0.00916913

0.200000 1.85360731 1.82745774 0.02614957

0.300000 2.00000000 2.85256890 0.85256890

0.400000 1.99999999 2.00000000 0.00000001

0.500000 2.00000000 2.00000000 0.00000000
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