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Magnetohydrodynamic Flow and Heat Transfer for A Peristaltic Motion of
Carreau Fluid Through A Porous Medium
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Ain Shams University,

Heliopolis, Cairo, Egypt
Email: khaledelagamy2004(@yahoo.com

Abstract. The two-dimensional peristaltic motion of magnetohydrody-
namic flow and heat transfer for incompressible non-Newtonian fluid thr-
ough a porous medium in uniform channel with a sinusoidal wave are
studied. The system is influenced by uniform magnetic field. The prob-
lem is formulated and analyzed using a perturbation expansion in terms
of a variant of the Weicsenberg number. Carreau flow is considered in this
study to investigate the effect of porous medium. An analytic forms for
axial velocity,pressure gradient and heat transfer have been obtained. The
results were studied for various values of the physical parameters of the
problem and illustrated graphically.

1. INTRODUCTION

Our purpose is to investigate the mechanism by which a fluid is transported through
a duct when contraction waves propagate progressively along its wall. This valveless-
pumping principle, which is called peristalsis [1], plays a role in many physiological pro-
cesses with fluid transport and is also exploited in technology, e.g. in so-called “roller
pumps”.There are many investigations on peristaltic flow of Newtonian fluids have been
carried out . Rath [2] has given a survey of this subject, with a probably complete summary
of the bibliography unit. Studying peristaltic flows, especially with a view to applications
in biomechanics and physiology, one should consider real material properties of the fluid
being transported and determine the essential departures from the results of the theories for
Newtonian fluids. These investigations are, also, interesting for technological applications,
e.g. in the field of polymer processing. In this regard there are only few contributions in
the literature.

The analysis of the mechanisms responsible for peristaltic transport have been studied
by many authors. Latham’s investigation[3], may be the first study in this field and since
that time severai theoretical and experimental investigations have been made to understand
peristaltic action in both mechanical and physiological situations.

Some of these studies were made by Burns and Parkes [4], Barton and Raynor [5],
Shapiro et al. [6], Lykoudis and Roos [7], Roos and Lykoudis [8], Shuka et al. [9], Elshe-
hawey and Mekheimer [10].

Since most of physiological fluids in the human body behave like non-Newtonian fluids,
some researches on non-Newtonian fluids were recently published.
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Bohme and Friedrich [1] have investigated peristaltic flow of second-order viscoelastic
liquid assuming that the reliant Reynolds number is small enough to neglect inertia forces,
and that the ratio of the wave length and the channel height is large so that the pressure is
constant over the cross-section. ELmisery, Elshehawey and Hakeem [11] have studied the
peristaltic motion of an incompressible generalized Newtonian fluid in a planar channel of
uniform geometry in case of long-wave approximation. The same problem for non-uniform
channel has been studied by Elshehawey, EL Misery [12].

The effect of porous medium on the motion of the fluid have been studied by many
authors, Elshehawey et al. [13] studied the effect of porous medium on peristaltic motion
of a Newtonian fluid. Eldabe [14] studied magnetohydrodynamic flow through a porous
medium fluid at a rear stagnation point. Eldabe et al. [15] studied MHD flow and heat
transfer in a viscoelastic incompressible fluid confined between a horizontal stretching
sheet and a parallel porous wall. Elshehawey et al. [16] studied the peristaltic motion of a
Generalized Newtonian fluid through a porous medium.

Elshehawey et al. [17] studied the peristaltic motion of a Generalized Newtonian fluid
under the affect of transverse magnetic field. This problem studied the effect of porous
boundaries on peristaltic transport through a porous medium. Elshehawey and Sobh [18]
studied the peristaltic viscoelastic fluid motion in a tube.

The main aim of this work is to study the effect a magnetic field and heat transfer on
a peristaltic motion of Carreau fluid through a porous medium in uniform channel with a
sinusoidal wave. The system is expressed by uniform magnetic field and heat transfer. By
using Weicsenberg perturbation technique, in fact we have to choose the parameters for the
Carreau fluid such that the Weicsenberg number W < 1, the wave number ¢ is neglected
and the Reynold’s number R, is very small {17]. The velocity, pressure gradient and heat
transfer have been obtained in explicit forms. The effects of the parameters of the problem
on these solutions (the magnetic number, the Prandtl number, the Eckert number and the
Weicsenberg number) are discussed and shown graphically.

2. BASIC EQUATIONS

The basic equations of MHD motion neglecting displacement and free charges are

2.1. The continuity equation.

v:.V=0 Q.1
where V the velocity vector '
2.2. The momentum equation.
0
p[g—‘f+(K~V)Z]:—VP—f-V-z—eﬁK—i-ix_B_ (2.2)
0

where p is the density of the fluid, ¢ is the time, P is the pressure of fluid, 7 is the extra
stress tensor, p is the viscosity coefficient, € is the permeability fluid, J is the current
density and B the magnetic flux density.

2.3. Energy equation. »
oT 9
pcp[E—F(Z-V)T] =kVT+7-(VY) 2.3)

where ¢, k and T are capacity, thermal coductivity and temperature of the fluid.
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2.4. Maxwell’s equations.

V X B=ped Q.4
oB

VXE——E? 2.5)

V-B=0 Q. 6)

where F denotes the electric field and f, is the magnetic permeability.
2.5. Ohm’s equation.
J=0o(E+V x B) @.7
where ¢ is the electric conductivity.

2.6. Constitutive equation for Carreau fluid [16] is given by.
D700 g 4 (py )25 Q. 98)
M0 — Mo
where 7 is the zero-shear-rate viscosity, 7., is the infinite-shear-rate viscosity, I is a
time constant, 7 is the dimensionless power law index and - is defined by:

7= \/% Z ZV'iﬂ‘z‘j = \/%Hm 2.9
i

where IL,.; is second invariant of strain -rate tensor v-;;.
In equation ( 2. 8 ) we shall consider the case for which 7o, = 0 and I'y-< 1, so 7;; can
be written as [16]:

n—1
7iy = —mo[l + —5— () ’Iri; (2. 10)

T35 are the components of the extra stress tensor.

3. FORMULATION OF THE PROBLEM

We shall consider a two-dimensional channel of uniform thickness 2a, filled with an
incompressible Carreau fluid through a porous medium. A uniform magnetic flux density
By fixed relative to the fluid is imposed along Y'-axis.

The walls of the channel are flexible and non-conducting, on which are imposed travel-
ling sinusoidal waves of moderate amplitude.The geometry of the wall surface is defined
as in fig. (1)

2
H(X,t)=a+b sin%r(X—ct), 3.1
where b is the wave amplitude, A is the wave length, c is the speed of the wave and X
is the same direction of the wave propagation .
We choose moving coordinates (z, y), wave frame, which travel in the X -direction with

the same speed as the wave, the unsteady flow in the laboratory frame (X, Y") can be treated
as steady [6].The coordinates frame is related by :

r=X—ct,y=Y 3.2)
v=U~—-c,v=V 3.3)

where U, Vand u, v are the velocity components in the corresponding coordinate sys-
tems.
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Equation of continuity, Navier-Stoke’s equation and heat equation, respectively, take
the following forms [12], [14]:

Ou Ov
5T oy =0 (3.4
ou ou o 16P 1 67’11 67‘21 v T 92
Yoz +v8y - poOz p( 5z T Oy ) (60 + ;BO)U G-

ov ov o 16P 1 67‘21 67‘22 v

u%—l—va—y— ;gy— p(ﬁ—i_ By )—av (3. 6)
ua_T+v_8_T—£(6_2z+62_T)+_1_[T %4’_7— @—i-T (?ﬁ_ﬁ.@)]
Ox Oy  pcy, 0x2  Oy? PCp oz T Roy T Moy T oz

where v is the kinematic viscosity. From equation ( 2. 10) for (i, = 1, 2) we get:

G.7)

n—-1

n
1 = o[l + —5 (Ty)? 11

n—1
Tz = —no[l + —5—(Tr)*J712

n—1
o2 = —7o[1 + T(FV-)Z]W'zz (.8
where:
ou ou  Ov ov
Y1 =25 Y2 =Y 6y+6x’722 26y (3.9
The appropriate boundary conditions are:
dH
U= € V= e T=Tsaty=H(z)
M ) =0 T=Ty aty=0 3. 10)
8y =U,v=VY, =ig ary= .

Let us introduce the following non-dimensional variables

x X y Y c a?
= X =—, =2, Y'=—,t'=—t, PP=—P
N Y T a’ A7 cAng
U = ﬁ A =5k A= T— TS
* = — = — * = — = — T* =
u c’ v e’ cav’V caV’ Ty — T
« A ST
Tig = %Tz’j 1=07 Ty = %Tz’jl F I Vi = Z'Y’ij =7
* a ; . * a * €0
Vi =Vt FEL Y= 6= 5 G.11)
Using (3. 11) in equations ( 3. 1 ) and ( 3. 4 - 3. 9) after dropping star, we
obtain the following equations:
H(z) =1+ ¢ sin2nz (3. 12)
du | Ov '
—+7—=0 3.13
oz + oy ( )
du Ou oP 20111 0121 1
— —)=—7-0"+—=)-(—+M 3.14
Redugy tvay) = "oe ~ (g T gy ) (g M G-19
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ov v oP 87’21 87’22 (52
R.&3(u— )= 8+ ) - — .
(ua +v 8y) By ( 9z + By ) 601} (3. 15)
oT oT 82T 0T ou ov
” —-—) = 52 E.[6%°T11— 2r9s— (3.
Reé(u o +v8y) T( 82+82)+ [ Tll@x—héTmByG 16)
o v -
2452
+T21(ay + 8.’12)],
n—1
T11 = —[1 + TW2’Y'2]’)"11, (3 17)
1
g = —[l4+—Wy?y12,
1
Toe = —[1+ ——W3y?ya
ou ou v ov
g = D Ay = A 52 gy = 2— 3.18
Y1 =257 Y2 =Y = 8y+ 55 V22 By (3.18)
where:
a
¢ = 37
§ = ; is the wave number,
R, = p’f) is the Reynold number,
0
22
M = aan Bo is the magnetic number,
0
P = %0 ¢p is the Prandtl number,
E. = cpf(jjwc——qjs) is the Eckert number,
cl . .
W = s the Weicsenberg number.

The dimensionless boundary conditions are:

dH
=1l v=—=>=—"T= =H
u , U e 0 aty ()
0
0, v=0T=1 aty=0 3. 19)
Ay
Using long wavelength approximation (6 = & = 0), equations (3. 14 - 3. 18 ) become:
8P 8T21
bl —(= 3.20
3 (& + M (3.20)
8P
— =0 3.21
By (3.21)
1 6°T ou
vl _EcTZI(a_y) G.22)



6 Nabil T.M.El-Dabe, Ashraf Fouad and Marwa M.Hussein

n—1
T12 = T91 = —[1 + '—Z—WQ’Y']’Y'lQ, (3 23)
ou
2 =T = .24
Y12 = Y21 By (3.24)

Eliminating the pressure from ( 3. 20 )and ( 3. 21 ), we get:

827'21 1 du
- By? —(a—i-M)a—y—O (3. 25)
From equations ( 3. 23 ) and ( 3. 24 ), we have:
n—1 o\ du
=1y = —[1 = 1= .
:7'12 To1 1+ 5 w (8y) ]8y (3. 26)
4. RATE OF VOLUME FLOW
The rate of volume flow in the fixed frame is given by:
H(Xt)
Q(X,t) = / T(X,Y,t)dY @.1)
0

The rate of volume flow in the moving frame (wave frame) is given by:

¢lz) = /O ul(z, y)dy 4.2)

With the help of equations ( 3. 2 ) and ( 3. 3 ), one can show that these two rates of
volume flow are related by:

Q=g+ cH(z) “.3)

The time-mean flow over a period t = % at a fixed position X is defined as:

_ 1 rt

=7 | 4. 4
By using (2. 10),(4.2)in (4. 3 ) we get :

Q=q+ca 4. 5)

Defining the dimensionless time-mean flows 6 and F' in the fixed and wave frame,
respectively as:

0= onar = L . 6)
ac ac

Equation ( 4. 4 ) can be rewritten as:
=1+F @7

where:

H(z)
F= /0 u(z,y)dy 4. 8)
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5. METHOD OF SOLUTION

We expand the following quantities as power series in the small parameter W as follows:
u = Wou, + W2u, + O(W?)

OP _ yo?Fy

OP,
Dl ¢ /AU 2041 4
3 w o +We— s +O(W*).

12 = WOTia(0) + Wira01y + O(W*)
= WOT, + W2T, + O(W*)

F=W°F, + W?F, + O(W*") (5. 1)

The use of expansion ( 5. 1) with equations( 3. 19 ),( 3. 20 ),( 3. 22),( 3. 26 )and ( 4.

4 ) gives the systems of equations and after comparing the coefficient of W%and W2, we
get:

Pug OP, H(=)
F—O - (— M)uo = B—IO, Fo= /0 uo(w, y)dy (5.2)
Puy 1 dP1 3 dug ., Bug 4 H(z)
32T0 a’u,o 2
7 —PrEc(a—y) G4
0°Ty Jug ., Ouq n—1,0ug
— = p B2 ) (S oy 5.
5yt =P ERE(G +  (G0) 5. 5)
With corresponding boundary conditions:
d
UOZU1=—1,U0=U1 ——d—g To—Tl-—O aty:H(I)
Ou ou
Fyﬂza—;zo,m:vlzo,nzl,ﬂ:o aty =0 (5. 6)

The solutions of equations ( 5. 2 - 5. 5) subject to the boundary conditions ( 5. 6 ) give
the axial velocity component u, the pressure gradlent and the temperature distribution
T as:

y 2 Y 3y . y
= by + by cosh —= + W*[bg + b cosh —— + b4 cosh —= + bsysinh —], (5. 7
u 0 1 \/N [2 3 \/N 4 S \/N 5y \/N] ( )
oP H
— = (Fcosh — + VvV Nsinh N3 sinh —— 5.8
5o = (Peosh o+ VNsinh2o)/(Wismh o (5.9
H 3(n-1)
~N h—— 2 N
H cos \/N) w 163 —~——=f3f(H,N),
b5 2y b 9
T = — —_— - h— 5.9
g o8 Wi 2Ny + bry + bg + W=[bg cos Wi 5.9
2 .
+b1g cosh —= ?TJ\T + b1y sinh Y ~ + bioy? + bisy + bua),
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where N, § and (by, ....., b14) are defined in the appendix.

6. RESULTS AND DISCUSSION

The momentum and energy equations of magnetohydrodynamic flow and heat transfer
in a peristaltic motion of Generalized Newtonian fluid through a porous medium are solved
analytically by using Weicsenberg perturbation technique, in fact we have to choose the
parameters for the carreau fluid such that the Weicsenberg number W < 1, § is neglected
and the Reynold number R, is very small [16]. Our system of linear partial differential
equations are solved and the effects of the parameters of the problem on these solutions are
shown graphically.

Fig. (2) illustrates that the velocity distribution u increases with increasing the perme-
ability fluid €, but at y < 0.57 the vise verse occurs. It is found that the velocity distri-
bution u decreases when the magnetic number M increases, but after that at y = 0.57, u
starts to increase with increasing M in fig. (3). The effect of the parameter ¢ = ¢ on
the velocity distribution v is shown in fig. (4), where u increases as ¢ increases. From
fig. (5) we have seen that the pressure gradient %5 decreases as the permeability fluid
eg increases. In fig. (6) we note that the pressure gradient %—: increases with increasing the
magnetic number M. It is clear from fig (7) that the pressure gradient ‘3—5 decreases as the
parameter ¢ = ¢ increases and the inverse effect occurs at § = 0.5. It seems from figs. (9)
and (10) that the temperature T increases with increasing the magnetic number M and the
parameter ¢ = £. Figs.(8), (11) and (12) clear that the temperature T decreases when the
permeability fluid g , the Prandtl number 2. and the Eckert number E. increase.

7. CONCLUSION AND APPLICATIONS

In this work, we study of magnetohydrodynamics flow and heat transfer of the two-
dimensional peristaltic motion for incompressible non-Newtonian fluid through a porous
medium analytically. The governing partial differential equation of this problem, subject
to the boundary conditions are solved by using Weicsenberg perturbation technique. The
analytical forms for the velocity distribution u, the pressure gradient %g and the temper-
ature T' are obtained. The effects of the various physical parameters of the problem are
discussed and have been shown graphically. It is seen that the velocity distribution u de-
creases or increases as €y and M, but the pressure gradient g—i and the temperature T'
increase with increasing the magnetic number M, the temperature 7" decreases when the
permeability fluid e, the Prandtl number 2, and the Eckert number E, increase and the
velocity distribution u and the temperature T decrease with increasing ¢.

The study of this phenomena is very important, because the study of flow through
porous medium have many applications. It has an important role in agricultural, engi-
neering, science and petroleum industry. For example, ground water hydrology, extracting
pure petrol from crude oil and chemical engineering. There are examples of natural porous
media such as wood, filter paper, cotton, leather and plastics. As a good biological exam-
ples on the porous medium the human lung gall bladder and the walls of vessels. The
peristaltic motion has been found to involved in many biological organs such as esoph-
agus, small and large intestine, stomach, the human ureter, lymphatic vessels and small
blood vessels. Also, peristaltic transport occurs in many practical applications involving
biomechanical systems such as finger pumps [16].
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8. APPENDIX

1
(5 + M)
(F + H) cosh L

= —1-— VN

(\/_sth — H cosh VH——)’

(F+H)
(v/N sinh % — H cosh —\/}Lﬁ) ’
(F® + H® + 3H?F + 3HF?)

(\/]VSinh —H— — H cosh 413’

v
N H N H
= (H+\/_cosh\/_smh\/_ %cosh\/]vsmh\/]v
H H
—V/N cosh — sinh VN sinh — — H cosh —),
S N Vi
3(n—-1)
= H N
" 1), ),
3(n—1) N 3H . H
= —— cosh — — Hsinh —
TR R )
H 3(n—1)
osh —) — H/ N
(oosh =) = 2 B (o, ),
—3(n—1)
B 6N
3(n—1)
= v
= pT‘E b%a
2H H 1 1
= bl oosh o~ oy )
1 1
- bﬁ(bﬁ 8)’
be (n—1)4
16b1( 16 N3 b+ 3bs),
be (2b3—6b4—3\/_b5—(———1—)b3),
8b; 64Nz
bobs
2b;
be 3(77,——1) 3
—————=b” — 4b3 — 12
8Nb1( ans O s VNbs),
1 4H 2H H
—(bg(1 — cosh —=) + b1o(1 — cosh —) — 11 H sinh —
H( 9(1 — cos \/N)+ 10(1 — cos \/N) 11.H sin Wi
_b12H2)a
—bg — big.
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Abstract. We study fractal properties of climatic time series from Pak-
istan in this paper The correlation dimension is calculated for investigat-
ing the fractal structure of summer rainfall series of Lahore, Peshawar and
Karachi. Our computations show that time series of summer rainfall for
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that such an evolution of the climate possesses a random fractal structure.

AMS (MOS) Subject Classification Codes: 28A80, 37F45, 26A18
Key Words: Fractal structures,correlation dimension, Average Mutual Information.

1. INTRODUCTION

Several studies employ fractal dimensional analysis for examining the predictability of
geophysical time series (Mandelbrot, 1977, 1969; Rangarajan and Sant, 2004; Rangarajan,
1997). The so-called fractal structures are often studied under the name of fractal geometry
(Mandelbrot, 1968, 1982). This entirely new non-euclidean geometry provides a way of
describing a surprisingly wide range of complex structures and phenomena in quantitative
terms and provides an avenue towards an understanding of their properties. Generally, frac-
tals are structures which have the same degree of complexity on all length scales. Recent
mathematical studies of dynamical systems, represented by the available data models, tend
to show that the solution of simple nonlinear equations can exhibit complex temporal and
spatial behaviour. One can now find a lot of examples of equations showing a variety of be-
haviour ranging from simple periodic to chaotic. In particular, during the last few decades
there have emerged several attempts to use the paradigm of ’chaos’ for a description and
forecasting of climatic processes (Carl et al., 1995; Krupchatnikov, 1995; Sonechkin and
Ivashchenko, 1996; Vasechkina et al., 1996; Wang and Fang, 1996; Shrirer et al., 1997,
Sonechkin et al., 1997). Fractals are to chaos what geometry is to algebra. They are the
usual geometric manifestation of the chaotic dynamics. They have been called the finger-
prints of chaos (Sprott, 2003, 10. Igbal and Quamar, 2007), but they are interesting and
important in their own right, independent of their relation to chaos. Therefore, this paper
employs dimension analysis for investigating the fractal structure of the time series of
summer rainfall (for the months June to September) for Lahore, Peshawar, Hyderabad and
Karachi from 1882 to 2003. Section 2 determines time delay for the time series of sum-
mer precipitation of different stations. Section 3 provides the detail of calculation for the

17
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correlation dimension of fractal structure of summer rainfall of different cities of Pakistan.
Section 4 concludes the paper.

2. DETERMINATION OF DELAY TIME

There are two possible ways to estimate the delay time from an observed time series.
The first method is based on the calculation of the autocorrelation function of the data
and selecting as 7 the time of its first zero crossing. The reasoning behind this choice
is that the time when the autocorrelation function reaches a zero value marks the point
beyond where the X (#+7) sample is not completely correlated from X (¢), i.e. 7 is the
earliest time at which the autocorrelation drops to a fraction of its initial value. The second
approach involves the calculation from the data of a nonlinear autocorrelation function
called Average Mutual Information (AMI) defined as (Fraser and Swinney, 1986). They
argue that a better value for 7 is the value that corresponds to the first local minimum of the
mutual information where the mutual information is a measure of how much information
can be predicted about one time series point given full information about the other. We
continue by describing the algorithm for computing the mutual information, according to
Frasier and Swinney.

Mutual information is a measure found in the field of information theory. Let P (X (1)),
P (X (2))...P (X (n)) are the associated probabilities of X (1), X (2)...X (n)), the entropy
H of the system is defined as that it is the average amount of information gained from
measuring a series X (7). It is given mathematically as:

H(X(9) = Z P(X(i)) log, P(X(3)) 2.1

For a logarithmic base of two, H is measured in bits. Mutual information measures the
dependency of two series X (i+7) on X (i). Let

[s,q] = [X(9), X (i + 7] , (2.2
and consider a coupled system (S, Q). Then for a signal s and corresponding measure-
ment si , Eq. (2.1) becomes

H(Qls;) = —ZP(% |s;) loga[P(g; |s:)] 2.3)
H(Qls:) =3 Pl(f(is’fj logngfz’s‘fj ) (a) Q. 4)

Where P (qj' | si) is the probability that a measurement of q will result in gj, subject to the
condition that the measured value of s is si and P (s, gj) is the joint probability density for
measurements P (si) and P (gj). Next we take the average uncertainty of H (Q | si) over si,

(@181 = 3 P (@) @5
H(QIS) = 3" P(s,5)log: (;’qf)xs) 2.6)
E[H(QIS] = H(S,Q) - H(S)(7) @.7)

with
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H(S,Q) =Y P(si,q:)log2P(s:,4:)(8) 2. 8)
The reduction of the uncertainty of q by measuring s is called the mutual information I
(S, Q), which can be expressed as

1(5,Q) = H(Q) - H(S|Q) 2.9

1(5,Q) = H(Q) + H(S) ~ H(S,Q) 2 10)
where H (Q) is the uncertainty of q in isolation. If both S and Q are discrete time series,
then

18,Q) = 3 Pls.a)loga i @.11)

Replacing [s,q] by from Eq.(2.4), we get

. . P(X#),X(@E+T)
I(r) = P(X(i), X (i + 7))log; PO PO )

The appropriate time delay 7 is defined as the first minimum of the average mutual
information / (7). Then the values of X (i) and X (i+7) are independent enough of each
other to be useful as coordinates in a time delay vector but not so independent as to have
no connection with each other at all (for detail see, Khan, 2007).

Now we apply AMI technique to our climate data for the calculation of time delay. We
plot AMI of the summer rainfall of Lahore after removing trend in Fig. 1 As the first
minima occurs at 7 = 2, we infer that delay time for our climate data is 2 years. Similarly,
Figs. 2-4 show that summer precipitation data of Karachi, Hyderabad and Peshawar have
time delay 4, 1 and 4 respectively.

Q. 12)

3. FRACTAL STRUCTURE OF SUMMER RAINFALL

We use correlation dimension for discriminating between chaotic and random behavior.
We construct a function C(¢) that is the probability that two arbitrary points on the orbit
are closer together than (¢). The correlation dimension is given by log(C) / log((¢)) in
the limit ¢ tends to 0 and N tends to co. The correlation dimension is defined as the
slope of the curve C(g) versus £. C(¢) is the correlation of the data set, or the probability
that any two points in the set are separated by a distance €. A noninteger result for the
correlation dimension indicates that the data is probably fractal. C(e) is calculated for
every embedding dimension specified in the range and plotted against that range. For the
truly random signals, the correlation dimension graph will look like a 45-degree straight
line, indicating that no matter how you embed the noise, it will evenly fill that space.
Chaotic (and periodic) signals, on the other hand, have a distinct spatial structure, and their
correlation dimension will saturate as some point, as embedding dimension is increased.

We now calculate correlation dimension with different embedding dimension for sum-
mer rainfall of Lahore (see Fig. 5). QOur calculation shows that the time series of Lahore’s
summer rainfall has non-integer values of correlation dimension whish shows that Lahore’s
summer rainfall is probably fractal. As correlation dimension is greater than 1.5, data of
summer rainfall over Lahore exhibits Brownian motion.

Similarly, we summarize our calculations in Figures 6-8 for summer rainfall data of
Karachi, Hyderabad and Peshawar. In fact, our calculations suggest that time series of
these stations also exhibits Brownian motion.
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4, CONCLUSIONS

To better understand the climate evolution, this paper examines the question of character
of physical processes represented by the climate data. Well, how about a possible fractal
structure of evolution of processes governing the major climate stations we are investi-
gating?. Our computations show that the time series of summer rainfall for each station
exhibit a fractional brownian motion. In particular, it seems that such an evolution of the
climate possesses a random fractal structure.
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1. INTRODUCTION

Let A(n) denote the class of functions f of the form

fe)=z+ Y ae® (neN={1,2,..} (1. 1)

k=n+1

which are analytic in the open unitdisk U := {z € C: |2] < 1}.
Denote by 7 () the subclass of A(n) consisting of functions f of the form

fz)=z- Z arz® (ax > 0;n €N). 1.2
k=n+1

Let f € A(n) given by (1. 1) and let g € A(n) given by

g(z) =z + Z bz".

k=n+1
25
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The Hadamardproduct(or convolutiorr) of f and g is defined by

(fx9)(z) =2+ Z arbiz® = (g% f)(2) (z € U).

k=n+1
For complex parameters o;, 3; € C — {0, -1,-2,...} (¢ =1,2,...,l;7=1,2,...,m)
the generalized hypergeometric function ; ¥, (2) is defined by

insd (al)k...(al)k Zk
Fo(z)= Folen, ..o 81, ., Bm; 2) = — =
1Fn(2) =1 Fnon, - 003 B, s 2) ;(ﬂl)k._'wm)kk!
I<m+1,l,meNyg:=NU{0} ,2€TU)
where (A is the Pochhammer symbol defined by

PO+ k) (1, k=0
()\)k-—_m)_ {)\()\4-1)...()\4—19“1): keN.

Let Hy (@1, ..,04; 01, ...,0m) - A(n) — A(n) be the linear operator defined by
Hl,m(ah v 5al;/61a s ’ﬂm)f(z) = ZlFm(ala e 7al;ﬂ1a s 7/6m)z) * f(Z)

=2z + Z Fkakzk (1'3)
k=n+1 .
where o) " 1
a1 )k—1--- (1) k-1
Ty = L ' |
; ('Bl)k_l(ﬂm)k~1 (k_l)] ( Zn+ 1) (1 4)
It € T(n) s givenby (1. 2) then
Hym(on, - a3 B, -, Bn) f(2) : Z T | a2®. 1.5)
k=n+1

For simplicity, in the sequel, we shall write H; ., (a1, 1) f(#) instead of
Hl,m(ala ERE) al;lgla ER 513m)f(z)

The linear operator Hj (a1, 081) f(z) is called the Dziok-Srivastava operator [5] and
it contains, amongst its special cases, various other operators introduced and studied by
Hohlov [7], Carlson-Shaffer [3], Bernardi [2], Libera [10], Livingston [12], Ruscheweyh
[18], Srivastava-Owa ([15], [22]).

We say that a function f € A(n) is in the class S ,,, (A, 5,7) if

2V (z)

v(z)
7 <1 (1. 6)
283y + w(2) _ 1

v(2)
(zeU ,0<8<1 ,yeC—{0})

where
w'(z) _ z(Hym(on, £1)f(2)) + Ae*(Him(a1, B1) f(2))” a. 7
v(z) (1= NHym(ar, B1)f(2) + Az(Him(ea, B1)f(2)) '
(z€U,0<A<1,0;,8,€C—-{0,-1,-2,...},t=12,...,[;; =1,2,...,m)).
A function f in the class 7 (n) is said to be in the class T'S; ,, (A, 8, y) if it satisfies the

following inequality:
ll <Z”'(z) —1>!<[3 (1. 8)
7\ v(2)
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(€U,yeC—{0} ,0<A<1,0<f<1).
Finally, we say that a function f € 7T (n) is in the class TRy ,, (A, 4,7) if
1
W@ -|<p 1.9)
(2€U,yeC—{0} ,0<A<1,0<A<L1).

We note that there are some known subclasses of our classes of functions

Sl,m()‘a /67 ’Y) s TSl,m()‘, /67 ’7) and TRl,m()‘a /67 ’Y)
Examplel. If/ =2and m = 1 witha; =1 =a3, 1 = 1then

TS2,1()‘7:87’Y) = Sn(’}l) )‘aﬂ)

Example2. [f/=2and m = 1witha; =1 =0y, §; = 1 then

TR2,1()‘7 ﬂa ’Y) = Rn(’Ya )‘7 ﬂ)

The classes Sy, (v, A, ) and R, (7, A, 3) were investigated in [1].

Example3. Ifl =2andm =1withoy =1=ay, 51 =1, A=0, §=0b],y=1
then

TS2,(0,[6],1) = 57(b),
where b € C — {0}.The class ST (b) was studied in [9].

In the present paper we obtain a sufficient condition, in terms of coefficient bounds,
for a function to be in the class S (A, 3,v). We also determine an upper bound for the
Fekete-Szego functional |ag — pa3| for the class S; (X, 5, 7).

Furthermore, coefficient inequalities, radii of starlikeness and convexity, closure the-
orems, integral means inequalities and several inclusion relations associated with (n, §)-
neighborhoods for the classes T'S; (A, 8,v) and TRy ., (X, 3,+) are obtained.

2. COEFFICIENT ESTIMATES FOR THE CLASS S;m (X, 8,7)

In this section we obtain a sufficient condition for a function f € .A(n) to be in the class
S1.m (X, B,7) and we also determine an upper bound for the functional |az — pa3|.

Theorem 1. Let f € A(n) givenby (1. 1). If

o]

D LAk = D]k + Blyl — D[Tellax| < Bl (z €U) @ 1

k=n+1
where Ty is given by (1. 4), then the function f is in the class Sy (X, 8,7).

Proof Suppose that the inequality ( 2. 1 ) holds. We have for z € U,

|21/ (2) —v(2)| = [p(2)(28y = 1) + 2/ (2)| = | D [L+A(k = D)](k — D)Traxz"| -
k=n+1
26vz + i [L4+ Xk — D))k + 28y — 1)T'kay2"
k=n+1

< Vitnar[L+ Ak = DIk = DITellarll2(* = 28[7ilzl+ 352 a1+ Ak — D]k +
2817 = DTk la||2[*

<2 (il [+ Ak = 1]k + Bly| = DITkllak| - Blv]) < 0.
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which shows that f belongs to S; ., (A, 3,7). Thus, the proof of the theorem is com-
pleted. g

In order to prove our next theorem we need the following lemma.

Lemma 2 ([8]). Let w(z) of the form

2) = cxet 2.2
k=1

be an analytic function in U such that \w(z)| < 1 (z € U). If p is a complex number then
|c2 — pcf| < max {1, [} @.3)

Theorem 3. Let u be a complex number. If the function f € A(2) givenby (1. 1) isin
the class S (), B,7) then

Bivl 11181185 + 1]

Jag — paj| < —— max {1, |d|}
@+ 1) [ lesllas + 1]
i=1
where
1 m
4Byp2A+ 1) [J(es + D[] 85
d:= = = (2fy+1).
O+WHmH%+D
i=1 =1
Proof. Let
w(z) = 2V (z) —v(z)

(267 — Dv(z) + 2/ (2)
It follows that w is an analytic function in U, w(0) = 0 and |w(z)| < 1 (# € U). Consider

w(z) = Z ¢, z". Then
k=1

25 (k= DL+ Ak = DJlxans
(ciz+e2? +..) = =

1+ % kZ:Z[l +AGk— 1)](2B7 + k - DTyapz*"

which implies

(c1z+c22® +..)) (1 + —Z 14+ Ak — 1](287 + k — )T raz” 1)

1 oo
=35 ;;(k = D)[1+ A(k — 1)]Tkar2"t. Q2. 4
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Equating the coefficients of z and 22 in both sides of ( 2. 4 ) we obtain
m
23y H B
j=1
ags = 1 1
(A+1) H «
=1
and
pr]1 86 +1)
=1
a3 = ———— ez + (267 + 1)l
@2+ 1) [ il +1)
i=1
Hence
pr]l s+
=1
az — paz = — (ca — dc?) Q2. 5)
(22 +1) H a;(a; +1)
i=1
where
l m
48yu2r + 1) [J (s + 1) [] 85
L i=1 j=1
d:= . — —(287v+1).
(A+1) H J16+1)
i=1 j=1
It follows from ( 2. 5 ) that
A T 1631185 + 1]
j=1
laz — pa3| < ! i leo — dc?|.
@A+ ) I ] les|as + 1]
i=1
In virtue of Lemma 2 we obtain
m
Bl TT 184118; + 1
2 Jj=1
|ag — paj| < 3 max {1, [d|} .
2A + 1) [ ] lewillo + 1]
i=1
Thus, we completed the proof of the theorem. O

In the next sections we establish certain properties of the classes T'S; ., (A, 3,7) and
TRl,m()‘a ﬁa 7)'
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3. COEFFICIENT INEQUALITIES

In this section we obtain necessary and sufficient conditions for a function to be in the
class T'Sy,m (A, B,7) and TRy . (A, B, ), respectively.

Theorem 4. Let f € T (n) given by (1. 2 ). Then f belongs to the class T'S; (X, 3,7) if
and only if

o0

> [+ Ak = D]k + B[ — 1)[Tklax < Bl 3.1

k=n+1
(yeC—{0} ,0<A<1,0<fg<1).
Proof. Suppose f € T'S; (A, B3,7). By making use of ( 1. 8 ) we easily obtain

zv'(z) 3 ;
Re( ) 1) >—0y] (z€0U) 3.2

which, in view of ( 1. 7), gives

— > [+ AE= D]k — 1)|Tklapz"
e > 8| (3.3)

1= > 14 Ak — D)|Tkfarz
k=n+1

Re

Setting z = r (0 < 7 < 1)in ( 3. 3), we observe that the expression in the denominator
on the left hand side of ( 3. 3 ) is positive for 7 = 0 and also for all r € (0,1). Thus by
letting r — 1~ through real values, ( 3. 3 ) leads us to the desired condition ( 3. 1) of the
theorem.

Conversely, by applying the hypothesis ( 3. 1) and setting |z| = 1, we find by using (
1.2) that

i [+ Atk = D](k — 1)|Chfaxz”
Z_’/@ = 1, — k=n+1
v(z) 2 Z [14 Ak — D]|Tx|axz"
k=n+1
3 [ Ak = DIk = DITkfaff*
< k=n+1 _
1- Z [1+ Ak — D]|Tk|ax)z/F!
k=n+1

,B]’yl (1 - i [1 + /\(k - 1)]|I‘k|ak)
k

=n+1
< — = gl

1- Z [1+ Ak —1)][Tk|ax

k=n+1

Hence, by the maximum modulus principle, we have f € T'S; (A, 5, v), which evidently
completes the proof of the theorem. O
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Corollary 5. If f € T'S,m(), B, 7) then

Al
ar < m (k >n+1)
where
(A, 8,7, k) = [1+ Ak = D)](k + Bly| — 1)|Tk| G.4
(0<A<1,vyeC—-{0},0«<B8<1,k>n+1).

Equality holds for the functions
Bl
fu(2) =2 — o(\, B, 7, k)

By using the same arguments as in the proof of Theorem 4 we can establish the next
theorem.

Theorem 6. Let f € T(n) given by (1. 2). Then f is in the class TRy (), B,7) if and
only if

2 (€U, k>n+1).

> k[ + Ak — D)]iTklar < Byl 3.5)
k=n+1
(veC—-{0} ,0<A<1.,0<8<1)

Corollary 7. If f € TRy (A, 3,7) then

Bh

ak_m (an-l—l):

where _
0<A<1,veC—-{0},0<8<1,k>n+1).
Equality holds for the functions
Blv|

L k
fe(z) =2 @(A’ﬁ,%k)z (€U, k>n+1).

4. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY
We begin this section with the following theorem.

Theorem 8. Let the function f defined by (1. 2 ) be in the class T'Sy (X, B,7). Then f
is close-to-convex of order § (0 < 8 < 1) in|z| < r1(), 3,7, 8), where

(L= )L+ Ak = DI+l = 1) qﬁ
kA *

Proof. 1t is sufficient to prove that |f'(2) — 1] < 1—6 (0 < § < 1) for 2 € U such that
|z} < r1(A, B,7,8). We have

7“1(/\,57%5) = H]'f l:

k>n+1

o0
Z kay|z|F~t

k=n+1

If'(z) -1 =

Z kapz*!

k=n—+1

Thus |f'(z) — 1] <1 -4 if

o

> (155)wlt <1 4.1

k=n+1
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By making use of ( 3. 1 ) we obtain

— [L+Ak—DJ(k+8H-1)
2 Bl

Then the inequality ( 4. 1) will be true if

kY e < LG = DI+ 81— 1) .

Tklar < 1.
k=n+1

or equivalently

1—-8)[1+ Xk—-D)k -1 *=T
o [A BN = Dy | i) e
kBl
The theorem follows easily from ( 4. 2 ). O

Theorem 9. Let the function f defined by (1. 2 ) be in the class T'S;m (X, 3,7). Then f
is starlike of order § (0 < & < 1) in |z| < r2(N, 8,7, 8), where

k—1

(L= +Ak-DIk+BlvI-1)
(k —38)Bl~l

Proof. We must prove that |25 ~1] < 15 (0 < 6 < 1) for z € U such that
|z| < r2(A, 8,7, 8). We have

ro(A, B,7,0) = inf [

k>n+1

r

- > (k—Dagz*! > (k= 1ag|z/*!
zf'(z) | | k=1 < k=nt1
f P - [ — [
? 1= 3w |1 Y
k=n+1 k=n+1
2z s
Thus |26 1 <1-5if

oo E—§ -
P <
E (1—6) ag|z| <L “4.3)
k
In virtue of ( 3. 1) we have

~ [+ AE=DIk+8y—1)
2 Bl

Hence, the inequality (4.3 ) will be true if

(’I—iﬁ) - < LA 11)3]|(~yk| =Dy k> 04 1)

ITklax < 1.
k=n+1

orif

L
1

"o
T (k>n+1).

2] < {(1 =&)L+ Ak - DIk + 8y - 1)
- (k—8)BI

Thus, the proof of our theorem is completed. O
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Corollary 10. Let the function f defined by ( 1. 2 ) be in the class T'S; m (), 8,7). Then f

is convex of order § (0 < & < 1) in|z| < r3(A, 8,7, 6), where

A=A +AE-1)(k+ By - 1) ITkl]
k(k — 6)pl

By using the same arguments as in the proofs of Theorems 8 and 9 we can obtain the
radii of close-to-convexity, starlikeness and convexity for the class TR . (A, 3, 7).

Theorem 11. Let f given by (1. 2 ) be in the class TR ,, (X, B,7). Then the function f
is close-to-convex of order § (0 < & < 1) in |z| < p1(A, 8,7, 8), where

(1— &)1 + Ak —1)]
Blv| IM]

Theorem 12. Let f given by (1. 2 ) be in the class TR ., (A, B,7). Then the function f
is starlike of order 6 (0 < &6 < 1) in|z| < p2(A, 3,7, 6), where

k(L= O)[1 + Ak —1)]
(— 58] wu]

Corollary 13. Let f given by (1. 2 ) be in the class TR m (X, 8,7y). Then the function f
is convex of order § (0 < § < 1) in|z] < ps(X, 5,7, d), where

1= +Ak—-1)] . ]5
{ CEDLL 'F’”'] ‘

5. CLOSURE THEOREMS
Let the functions f; € 7(n) (j = 1,2,...,p) defined by

L
k=1

T3(Aa /67776) = k>i1717(f_‘|_1 [

1
k—1

k>n+1

pl(AwBa’Yaa) = inf [

1
E—1

p2(A7,Ba’Y? 5) = kzlrrllf-‘l—l I:

= i f
p3(Aa ﬂ”Y’a) kzurll-l—l

@) =2— ) ax;z* (z€ ). 6. 1)

k=n+1

We obtain the following results for the closure of functions in the classes 7'S; ., (A, 3,7)
and TRl,m(Aa lga ’Y)

Theorem 14. Let the functions f; (j = 1,2,...,p) given by ( 5. 1) be in the class
P

TSN B,y)andletc; >0 (j =1,2,...,p) such that Z ¢; = 1. Then the function h
j=1

defined by
P
h(z) = Z ¢ifj
j=1
is also in the class T'Sym (X, B,7).
Proof. In virtue of the definition of /&, we can write

h(z) = ch [z— Z ak,jzk}

k=n+1

00 p

— , _ ar s | 2
= Ecj z E Ecja;w z

=1 k=n+1 \j=1
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o0 b

— s . . k
=z E E cja; | 2",

k=n4+1 \j=1
Since the functions f; are in TS} . (A, 3, 7)., forevery j = 1,2, ..., p we have

[e )

> [+ Ak = DIk + Bly| = DiTklar,; < Bl
k=n—+1
Hence we get
oo p
> L+ A = DI+ B = DITel | Y cjany
k=n+1 j=1
P
= ch ( Y LMK =D+ Bl - 1) |rk|ak,j) > (Bl =B
k=n+1 i=1
which nnphes that h is in the class T'S; .. (), 3,). Thus, the proof of the theorem is
completed. : O

Corollary 15. The class T'S;.m(), 3,7) is closed under convex linear combination.

Proof. Assume that the functions f; (§ = 1, 2) given by (5. [ )are in the class T'S; ., (A, 5,7).
It is sufficient to show that the function /4 defined by
Wz) = pfi(z) + 1 —p)fa(z) (0<p<1)
is in the class T'S; ., (A, 8, 7).
By taking p =2 ,¢1 = p and ¢ = 1 — p in Theorem 14 we obtain the corollary. [l

Making use of the same arguments as in the proofs of Theorem 14 and Corollary 15,
closure properties for the class TRy (), 3,7) can also be obtained.

6. CONVOLUTION AND INTEGRAL PROPERTIES

In this section we shall prove that the classes 7'S; (A, 8,7) and TRy (X, 3,7) are
closed under convolution and integral operator.

Theorem 16. Let g(z) of the form
o
g(2)=z— ) 2’ (0<e<1,k>n+1)
k=n+1
be analytic in U. If the function f belongs to the class T'S) (), 3,7) then the function
f * g is also in the class TSy (X, B,7).

Proof. Sincef € T'S;m(X,3,7) by (3. 1) we have

> L4k = D)k + Blyl — DTelar < Bll.

k=n—+1
By making use of the last inequality and the fact that

(f*g Z akaZ

k=n+1
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we obtain
Y- [+ Ak - DIk + Bh] = DITklarce
k=n-+1
< Y [+ AKR= DIk + 81| - D[Tklax < Bh
k=n-+1
and hence, in virtue of Theorem 4, the result follows. [l

Let I, : T(n) — T (n) be the integral operator defined by

1 z
F) = L)) = / £=Lf()dt (> —1, 2 € T) 6. 1)
0
We note that if f € 7 (n) is given by (1.2 ) then
N
F(z)=2z— . 6.2
(2) =2 k:z:nﬂc_{_kakz 6.2)

Theorem 17. If the function f is in the class T'S; m (X, B,y) then the function F given by
(6. 1)isalso in TSy m(A B,7).

Proof. From ( 6. 2 ) it results that F(z) = (f % g)(z) (z € U), where
= c+1 k c+1
=z — E —_— d 0< <1.
9(2) = z M c+ kz an Tc+k T

By Theorem 16, the proof'is trivial. O

The proofs for the convolution and integral properties for the class TRy . (A, 3, y) are
similar.

7. INTEGRAL MEANS INEQUALITIES

In order to prove the results regarding integral means inequalities we need the concept
of subordination between analytic functions and also a subordination theorem due to Lit-
tlewood [11].

Let f and g be two analytic functions in IU. The function g is said to be subordinate
to f,denoted by g < f, if there exists a function w(z) analytic in U with w(0) = 0 and
|lw(z)| < 1 (2 € U) such that g(z) = f(w(z)) (2 € U).

Lemma 18 ([11]). If f and g are two analytic functions in U such that g < f then
27 2
/ lg(re®®)[#d6 < / [F(re®)|Hd6 (u>0,0<r<1).
0 0
Theorem 19. Suppose f € T'S; (A, B,7) and let the function f2(z) defined by

_ Bhl
f2(z) =z m22 (z € U)

where ®(X, 3,7, k) is defined by (3. 4 ).If {®(), 8,7, k)}rey is a non-decreasing se-
quence, then

27 2m
/ If(z)l*‘deg/ [f2(2)|FdO (z=1re®, 0<r<1, u>0).
0 0
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Proof. Let f(2) = z — Zakzk. For z = re? (0 < r < 1) and 1 > 0 we must show that

k=2
2 o0 27
_ B
11— apz® 1|dé’§/ 1—- ———_z|df.
/0 ;_2 0 | (I)(Aaﬁa’-y’?) |
By applying Lemma 18 it would suffice to prove that
- Ahi
1-— kel 2 7.1
Z_:akz @(A,ﬁ’%Q)Z ( )
Setting
- ol
1— apz"t=1— — _y(2) (z€U
2o 0,8,7,2) ") FEY
we find that

= @(AvﬁafyaQ) k—1
(2) = ————aiz
v ,CZ::Z Bl "

which readily yields w(0) = 0. Since {®(X, 3,7, k)} -, is a non-decreasing sequence,
we have

(X 8,7,2) < &\, 8,7, k) (k=2).
In virtue of (3. 1 ) we obtain

IU)(Z |_ |Z (I)(A ﬁ '7: kzk—ll

Bl
O k
<(Z|Z ﬁf\v Do <ol < 1.
The last inequality shows that we have the subordination ( 7. 1), which evidently proves
our theorem. ]

The proof of the next theorem is the same with the proof of the Theorem (19).
Theorem 20. Suppose f € T'S; (X, 8,7) and let the function fa(z) defined by
_ B |’Y | 2
fa(z) == @(}\’ﬂ’%Q)z (ze )
where ®(X, 8,7, k) is defined by (3. 4 ). If {®(\, 3,7, k)} 7, is a non-decreasing se-
quence, then

27 27
/ |f'(2)|*df < / If2(2)|#do (z=7re? , 0<r <1, p>0).
0 0

In the same way we can obtain integral means inequalities for the class TR; (A, G, 7).

Theorem 21. Suppose f € TRy ., (X, 8,) and let the function f2(z) defined by

_ Bl
B TIWR)
where U(X, 8,7, k) is defined by (3. 6 ).If {U(\, 8,7, k)}res is a non-decreasing se-
quence, then

27 27 )
/ |f(z)|“’d9§/ If2(2)|#d0 (z=7re? , 0<r <1, u>0)
0 0

22 (z€U)
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and

27 27
/ 1F(2)|d8 < / B0 (z=re®  0<r<1,u>0).
0 0

8. INCLUSION RELATIONSHIPS INVOLVING THE (7, §)-NEIGHBORHOODS

In this section we establish some inclusion relationships involving the (n, §)-
neighborhoods for each of the classes 'S r, (A, 8,7) and TRy ,, (X, 5,7).

Following the earlier investigations by Goodman [6], Ruscheweyh [19], Silverman
[20]and others ([14], [23]) we define the (n, §)-neighborhood of a function f € T(n)
by

Nn,lg(f)z{ge’f(n):g(z):z— Z bi2* and Z k|ak—bk|§5}. 8. 1)

k=n+1 k=n+1

In particular, for identity function e(z) = z (¢ € U) we immediately have

Nps(e) = {g €T(n):g9(z)=2— i by2* and i klb| < 5}. (8.2)

k=n-+1 k=n+1
Theorem 22. If {®()\, 8,7, k) } oy is a non-decreasing sequence and

5= (n‘}'l)/@hi
© (An+1)(n+ By Cryal

(8. 3)
then
TSl,m(Aa :67 ’Y) C Nn,&(e)‘

Proof. Let f € T'S; (A, B,7). Then in view of the assertion ( 3. 1) of Theorem 4 and
the given condition

B\ B, 7+ 1) < BN B, k) (k=n+1)

we get
O\ B, vm+1) Y ak < Bl
k=n+1
or
An+1)(n+BDITnss] Y ax <Al
k=n-1

which implies that

= Ayl

< . 8.4
IDE (An +1)(n + Bly))ITr i1l @4

k=n-+1
Applying the assertion ( 3. 1) of Theorem 4 again, in conjuction with ( 8. 4 ) we find

O+ DTl Y kae < Byl + @ = Bl)(An+ D[Tngal Y
k=n+1 k=n+1

R L 1><nﬁfz|am>lrn+ll

_ (n+1)8lyl|
n+ Byl
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Hence
S (n+1)80n]
kay < =:4
k:;ﬂ (An +1)(n + Bly))Tral
which in virtue of ( 8. 2 ), proves our theorem. O

Similarly, by applying the assertion ( 3. 5 ) of Theorem 6 instead of the assertion ( 3. 1
) in Theorem 4 we can prove the following theorem.

Theorem 23. If {¥(X, §,7,k)} 5y is a non-decreasing sequence and

_ Bl
(An+ DTr

then
TRl,m(/\: /37 ’7) - Nn,ts(e)'

9. NEIGHBORHOODS FOR THE CLASSES T'S;m (A, 8,7) , TRim(\, 8,7)

In the sequence, we shall determine the neighborhood properties for each of the classes
of functions

TS2) (A, B,7) and TR{®) (X, 4,7)

l,m
which are defined as follows.
A function f € T (n) is said to be in the class TSL(";)L (A, B,~y) if there exists a function
g € TSy (A, 8,7) such that

fM—1’<l—a(Z€U-/0§a<l) G.D

9(2)
Analogously, a function f € 7 (n) is said to be in the class TRZ(Q) (A, B,7) if there

,1M

exists a function g € TRy ,, (A, 3,y) such that the inequality (9. 1) holds true.
Theorem 24. If g € T'S; 1, (X, B,7) and

=1— S(An+1)(n + BlyDITnq1]
o=t (n+ D[(An+ 1) (n+ By Tns1] — B By = 1) 9.2)

then N,, 5(g) C TSl(’a)(/\, B,7)-
(

m

Proof. Suppose that f € N, s(g). Then, from definition ( 8. 1 ) we find that

o0

> klax — bkl <6

k=n+1

which readily implies the inequality

o0 6
E — < — .
A |CL1C bk| S o (n c N)

Since g € T'S;,m (A, B,7), from (8. 4) we have

B

be < _
k:;+1 F (An+1)(n+ BIYDITra |
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1t follows that
x0
> o — bl
o
D
k=n+1
SO B €V ey 7)), ¥ PR
“n+l An+ D+ B0DTns] —Bh
provided that « is given by ( 9. 2 ). Thus, the proof of our theorem is completed. O

The proof of Theorem 25 below is much akin to that of the Theorem 24.

Theorem 25. If g € TR (), B,7) and

= O T D] Ay P12

then Nn,g(g) C TRZ(?,A(Aa ﬁ> 7)

Remark 26. By taking I';,4; = 1 in Theorem 24 and also in Theorem 25 we obtain the
inclusion relation of Altintag et al. [1].
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1. AUXILIARY CONCEPTS

1.1. Let D beadomainin R and f : D — R™ be a vector function. The vector function
f:D — R™has atapoint a € D a total differential, if there exists a constant matrix

C={Clizs
SIS

such that
f@)—fle)=C- (z—a)+o(lx—al) (x—a, zeD). (1.1
It is known, that a function f has a total differential at a point a € D, if in a neighbor-
hood of a there exist partial derivatives 0f;/ 0z; (i = 1,...,n,j = 1,...,m), which are

continuous at a. There are examples which show that the continuity of partial derivatives
at a is not a necessary condition for the existence a total differential at a.
1.2. Let f: D C R™® — R™ be a mapping of the class W,=™ (D). We put

loc

on o
oz, Oz,
1/2
ro=| | andinest, | @) = iz(-ﬁim)
- o ! - A 8 6371'
Ofm Ofm w=ts=1
Bz 0w

We shall say, that a mapping f : D C R™ — R" belongs to a class W (D), if for an
arbitrary subdomain D’ CC D there exists a constant p > n which, in general, depends
on I, such that f € WHP(D'). A continuous mapping f : D C R™ — R™ is almost
quasiconformal in D with a measurable function K (x) > 0 and locally integrable function

41
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6(z) : D — R,if f € WL (D) and almost everywhere on D the following property holds

loc
I (@)™ < K(z) [ (2, /)i +6(z), (1.2
where
J(z, f) = det (f'(z)) .

The concept of almost quasiconformal maps belongs to Callender [6], however we note
that the condition { 1. 2 ) has in [6] a different form. Namely, in [6] it is assumed that
K(x) = const, and instead of |J(x, )] it is written J(z, f). Thus the class of maps con-
sidered here is essentially wider than the class considered by Callender in [6]. In particular,
our definition permits to consider degenerate quasiconformal maps.

Under condition of preservation of the Jacobian sign and the assumptions

K=const >0, 6=0,

the supposition ( 1. 2 ) means that the mapping f is quasiregular [23, §3 Ch. 1}, [25, Sect.
14.1]. It should be noted that in the case of quasiregular maps it is assumed only that the
vector-function f is continuous and belongs to I/VI‘LC” (D), and the supposition Wllocn (D)
holds automatically.

The assumption { 1. 2 ) does not require that the sign of det (f'(xz)) is constant. Thus,
almost quasiconformal maps can change their orientation.

The following simple statement [12, Sect. 8.1] shows that the class of considered maps
is very wide.

Proposition 1. Let f : D — R" be a mapping and moreover
f € ACL(D) and esssup,cpllf'(z))] <g¢< .

Then f is almost quasiconformal with K = en™? and § = (14 €) ¢", where € = const >
0 is arbitrary.

1.3. Inthe case, if D C R? and a € 8D is a multiple point of a boundary, the relation (
1. 1) can depend on a direction of the approach to the point ¢ from D and, consequently,
the definition of the total differential must be more precise.

We define ends of a domain D using analogy with the Carathéodory theory of prime
ends (see, for example, [13, §3]).

For an arbitrary set U C D we put [U] = U \ 8D, where U is the closure with respect
toR"™. Let {Ux}, k= 1,2,... be a family of subdomains Uy, C D with properties:

(i) forevery k=1,2,... [Upy1) C Ug,
(i) () [Ux] = 0.
k=1

An arbitrary sequence {Uj } with these properties is called a chain in D.

Let {U}}, {U}/} be two chains of subdomains of D. We say, that U] is contained in
{U}'}, if for every m > 1 there is a number k(m) such that for all £ > k(m) the following
property holds U}, C U/.. Two chains are called equivalent, if each of them is contained
in the other one. The classes of equivalence £ of chains are called ends of D.

To define an end ¢ it is sufficient to set even one representative of the class of equiva-
lence. If an end £ is defined with a chain {Uy }, then we write £ =< {Uy}.

A body of a end & < {U}} is the set

[5[ = ﬂé’ifU_i.
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It is clear, that this set does not depend on the choice of a chain {U}}.

Let {x, }5°_, be a sequence of points x,,, € D which does not have condensation point
in D. Such sequences are called nonconvergent in D.

Let a; € |£| be an arbitrary point. A nonconvergent in D sequence of points x, € D
converges to a point ag with respect to the topology of §, if x, — ag (with respect to
the topology R™) and for some chain {U;} € £ the following property holds: for every

=1,2,... there is a number m(k) such that z,,, € Uy, for arbitrary m > m(k).

Let D be a domain in R", £ be an end of D, a¢ € |£| be a point. We shall say, that
a subdomain D’ of D adjoins at ag, if a; € 8D’ and any sequence of points z, € D,
converging to a; with respect to the topology R™, converges to this point with respect to
the topology of £. We shall say, that a vector-function f : D — R™ satisfies to the property

Tlim flxy=A4, A=(A....An)
.,—'a&
if
flex) = A as zp — ae
along every sequence of point x;, € D, which converges to a¢ with respect to the topology
of £&. The vector A is denoted by f(a¢).

Suppose that a vector-function f : D — R™ and a point a, are such that f(a¢) exists.
We say, that f has a rotal differential at a boundary point a., if there exists a constant
matrix C' = {C;;} isisn s for which

f@) = flag) =C - (z—ag) +o(|z —ae]) (z—ag, zeD). (1.3
As in the case of an inner point, we shall say that

df(ag) =C- (.’E - ag)
is a differential of f at a,.

The differential of the vector-function at the boundary point need not be unique (see
corresponding examples in [9]).

2. The weighted modulus

2.1. Recall the definition of the class ACLE. Let D C R™ bean openset. Fix i, 1 <i <n,
and denote by D an orthogonal projection of D onto the hyperplane ; = 0. For an
arbitrary locally summable in D function f we put

frah 2! = fler, . o i1, 6, Tig 1, -, T
,’E;:(.’E]_,-.-,xifl)a x;/:(xi—kl-,“'-/xn)-

Next, let
Dy(ay, ) = {(z,t,2]) € R : (27,0,27) € D]}

A continuous function f : D — R is called absolutely continuous on lines (or shortly,
ACL), if forevery i = 1,. .., n, the coordinate functions f;(x},t, z}) are absolutely con-
tinuous (with respect to the variable t) inside the union of linear intervals D N D;(x}, x})
for H™~L-almost all points (z},0,z;) € D;. (Here and below the symbol dHP means an
element of p-dimensional Hausdorff measure.)

Every ACL-function f : D — R has partial derivatives 8f/dz; (i = 1,...,n) almost
everywhere in D. By the symbol f' = (8f;/0z;) we denote a formal derivative of f at
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points, where all partial derivatives exist. At points, in which the matrix f' is not defined,
let us agree to take all 0f; /0z; = +oo (i=1,...,m;7=1,...,m).

Let o : D — R! be a nonnegative measurable function, which is defined almost every-
where in D, and let p > 1 be a constant. The class ACL? (D) is the set of ACL-functions
in D, for which

/ 1F (@) o(z) dH™ < oo
D

In the case, if the weight function & = 1, we have the well known class ACLP(D),
which coincides with the set of continuous W} (D)-functions [17, Theorems 5.6.2-3].

2.2. Let D be a domain in R™, m > 1, let U C D be a countably (H*, k)-rectifiable
set, 1 < k < m,andleto : U — R! be a nonnegative H*-measurable function. Fix a
constant p > 1 and for an arbitrary family I of locally rectifiable arcs v C U, we define a

(p, o )-modulus
/ pF o dH*
U

D

. 1

i | part

Y
where the infimum is taken over all nonnegative, Borel measurable functions p in U. If
I' = (, then we put mod,, ,(I'; U) = o.
In the case U = D we have a standard definition of the weighted (p, o)-modulus of the

family T' in R™ (see, for example, [18, Sect. 3.2]).

mod, ,(I';U) = inf 2.4
p

2.3. Lety and a be a pair of points such that y € D and either a is an interior point of
D, ora = a¢ € |£|, where £ is an end of the domain D C R™. We say that a simple Jordan
arc v, defined by a parametrization x(7) : (0,1) — D, leads from y to a,if 2(0) = y and

711_’11113:(7-):(1 as a€D
and there is a sequence 7, — 1, along which
leiglx(ﬂc) =as as ac €.
We consider a family T" of all locally rectifiable, simple Jordan arcs v C D, leading

from y to a. We put
mody, +I'(y, a; D) = mody, (I'; D) . (2.5)

24. Let D C R" be a domain and ¢ = a¢ be its interior or boundary point. Fix
a continuous vector-function » : D — R*, 1 < k < oo and put BY(a,7) = {z €
D : |v(z) — v(a)| < r}. By Bf(a,r) we denote a connected component of B¥(a,r),
containing ¢ if e is an interior point of D, and adjoining at @ if ¢ € |&|.
By S%(a, ) we denote the relative boundary
Shla,r) =90Bh(a,r)\ 8D.
In the case v(x) = x we shall use notations B"(a,r), B} (a,r) and S%(a,r), respec-
tively.
Suppose that v(z) is locally Lipschitz. Let A(z) = |v(z) — v(a)| and let
0 <ess inf |Vh(z)| <ess sup [Vh(z)| < oo (2. 6)
zeD’ zeD’
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on every subset D' € D.

By Theorem 3.2.15 [16] (see also [18, Theorem 1.6.1]) for a.e. t € R! the sets S¥ (a, t)
are countably (H"~!, n — 1)-rectifiable.

Fix a countably (K" ™1, n — 1)-rectifiable set 5% (a,t) and a measurable function ¢ :
5% (a,t) — R!. Let U be a connected component of S% (a, t). For a pair of points a3, a2 €
U letI' = I'(ay,az) stands for the family of all locally rectifiable arcs 4 C U, joining
points a1 and ao. We define a weighted modulus

mod(as,az; o) = mod, ,I'(a1,as) . 2.7
Next, let
#(S%h(a,t),c) =inf inf Umod(al,ag;a), (2.8
ay;a2€

where the first of infimums is taken over the collection {U} of all connected components
U of S (a,t).

We put
o

k”(a,t) = k(ShH(a,t),0*), o* = A

where ¢ : D — R! is a nonnegative measurable function.

2.5. We shali need the following multidimensionat version of known ”Length and Area
Principle” (see, for example, [19], [13]).

Lemma 2. [7] Let D be a domain inR”, leta = a¢ € D, let avector-functionv : D — RF
satisfy (2. 6 Y and o(z) : D — R is a nonnegative, measurable function. Let f : D —
R™ be a vector-function of the class ACLL (D). Then for arbitraryt’, t'' € h(D), t' < t",
the following inequality holds

/ " (f, % (a,1)) K (a, ) dt < / I @ olz)dHM@).  @.9)
t D(t ")
Here
Dty ={zeD:t < v(z) - va)| <"},

Q(f,5%(a,t)) = suposc (£, U)
U

and the infimum is taken over all connected components U of S{,(a, t).

3. MAIN RESULTS

3.1. Let D C R"™ be an open set. We say that a function f : D — R™, m > 1, is
monotone, if for every subdomain U C D the following property holds

osc (f,U) <osc (f,0'U), 8U=0U\D.
Here and below by the symbol
osc (¢, ) = sup |¢(z) — ¢(y)]

z,y€EE

we denote the oscillation of a function ¢ on F.
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Let A(t) : [0,00) — [0,0c) be an upper semicontinuity function. We shall say, that
f:D — R™ m > 1,is h-monotone, if for every subdomain U C D we have

h(osc (f,U)) <osc (f,0'U),

and is a-monotone, 0 < a = const < oo, if f is h-monotone with h(t) = t*.
Some examples of c-monotone functions were given in [8].

Fix a continuous vector-function v : D — R¥*. We say, that a vector-function f : D —
R™, m > 1, is weakly (h, v)-monotone close to a point a = ag (interior or boundary), if

Jimm sup h (osc (f, B (a.r)))
0” " osc (£, Sp(a,r)
and weakly (o, v)-monotone close to a point a, if f is weakly (h, v)-monotone close to a
for h(t) = .
It is clear, that every monotone in the Lebesgue sense function is weakly (v, v/)-monotone,
a =1, close to every point.

3. 10)

3.2 For an arbitrary continuous mapping ¥ = ¢(z) : D C R™ — R"™ and foraset A C D
by N(y; ¢, A), we shall denote the number of preimages of a point y € R™ in A. Next we
put

n(z; 0, A) = N(y; 0, A), where y = ¢p(z).

3.3. The following statement is the main result of this paper

Theorem 3. Suppose that a vector-function f : D — R™ is an almost quasiconformal
mapping of a domain D C R™ in the sense (1. 2), for which

/Mm)dm <. 3. 11)
D

K(x)

Then for every subdomain A C D the following inequality holds

IS @l /K

() n(z: f, A) G- 12)
A

ﬂ?fA)

On the other hand, let 6. = a¢ € D be an interior or boundary point of the domain and
let v : D — RF be a continuous vector-function satisfying (2. 6 ). If

i) for some p > n and some constant matrix C = (Ci;)};_, the following assumption

holds
I1f'(z) = C|" dz

K(z)n(z; f, Bp(a,r(a,y)))
By (ar(a))

TP mOdP:UrF(ya a; BE (CL, T(av y)))

limsupv—
s

=0, (3.13)

where
1

r(a,y)=inf{t >0:y € Bi(a,t)}, o.(z) = K(z)n(z; f B}’)(a ) )

(. 14)

or
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i) the vector-function f(z) — C - z is weakly (a, v)-monotone close to a and there is a
constant A > 1, for which

Ar(a.y)
. |f"(z) = C||" dx : / di
1 no v t =
Lsup K(z)n(z; f, B, (a,m(a,y)) " (a.y) w(a1) t 0,
ven BY,(a,Ar(a,y)) r{a,y)

then f has at the point a = ag the total differential C - dz.

3.4. Consider some particular cases of Theorem. Letw = f(z): D C C' — Cl bea
generalized solution of a Beltrami equation

fz=u(z) fx, (3. 16)
where 11(z) is a measurable complex-valued function, and by symbols
, 1 ) 1 .
Iz:'i(fz_zfy)a ffzi(fz""lfy)

we denote formal derivatives.
Note that in contrast to the traditional case (see, for example, [10, Ch. V], [11, Ch. 1)
we do not assume here, that |p(2)] < 1.

We have
J(z. ) =162 = 1f:P = A = lu@) ) 1P
and
1117 = 1F=1” + 17217 = (U4 [u(2) P f1?
Thus,
1112 1 + l,u'|2
— T T,
£ < e e £
and (1. 2 ) holds with
L+ ()P _
K e ARNTT 6 =
&= e 7=
The assumption ( 3. 11 ) holds always.
Here we have also
1 11— |u(2)]

7O = Kayn(e £, Bpa,r)) (0 + HGIR) nt £, Bpla )’

For schlicht maps n(z; f, B%(a,r)) = 1 and

L+ |u(2)l?

Theorem connects the differentiability of f at a singular point ¢ = a¢ with the behavior
of the characteristic 1(2) close to its neighborhood. In the case, if a is an inner point, see
[11, [2], [3, Ch. V1], [4, Ch. 11]. In the case, if a = a¢ is a boundary point and p(z) = 0,
see related results in [5, Ch. 11].

In the case, if the matrix C is orthogonal, Theorem gives conditions, under which maps
f: D — R"™ are conformal at a = q;.
For space quasiregular maps, near questions were being considered in [24, Ch. VI].
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4. PROOF OF THEOREM

Let ¢ : D C R™ — R"™ be a continuous mapping. This mapping ¢ is called absolutely
continuous, if for every ¢ > 0 there is 6 > 0 such that for an arbitrary measurable set
E C D, mes, E < ¢, we have mes,,(F) < €. In particular, every absolutely continuous
mapping possesses the Lusin N-property.

Lemma 4. [20] If a mapping o is continuous and belongs to the class WIIO: (D), then  is
absolutely continuous on every subdomain D' € D.

Applying Lemma 2, we conclude that the following statement holds (see, for example,

[22]).

Lemma 5. [f a mapping o is continuous and belongs to Wﬁ)’C"(D), then for an arbitrary
integrable in (D) function u(y), the function (u o @)(z)|J (x, )| is integrable in D, and
moreover

/ wly) Ny 0, A) dy = / (wo )(z) | (z, 0)| . 4. 17)
A

(D)
In particular, if we observe that

Jz, ) Iy, o ) =1, y=op=),

1
N{y; 0, A)’

and set
u(y) =
then using ( 4. 17 ) we have

| (z, #)|
2{p(A)) = = | ————dz.
mesy, (p(A4)) / dy Y dz
w(A) A
From this, using ( 1. 2 ) we conclude that
' (=)||" — 6(=)
K(z)n(z; f, A)

and, thus, we obtain (3. 12).

dx < mes, (f{A)),

Consider the family of locally rectifiable arcs I'(y, a; BY (a, [y—al)), lying in BY, (a, |y—
a|) and joining the point y € B¥ (a, |y—a|) with the point a. Choose in ( 2. 4 ) the function
o(x) = |If'(z) - Cl|. We find

If'(z) = ClfPo(z) dH™

v B (a,ly—al)
mody o Ty, a; B (a, Iy — al)) £ —2 .

/ |f'(z) - O |da]

(4. 18)

vel“(yaB (a ly—al))

~ Ifyis an arc of the family I'(y, a; B (a, [y — al)), then
F@W) — fl) —C - (y—a)| < / 1/ (z) - O i
Y
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Thus using (4. 18 ), for every point y € D we have
1 (z) = ClIPo(z) dH™

B (a,|ly—al)
W) = fla) = C- = ol < = e B (e —al)

By virtue of (4. 19 ) the assumption ( 3. 13 ) implies realization ( 1. 1 ) (respectively, (
1. 3)) and, thus, the existence in the case 7) of the total differential at a = a,.

@. 19)

We first prove the statement in the case 7). Fix a point y € D and consider the subdo-

main
BE(OWT)a a = ag, r:r(a,y),
adjoining at the and £ and containing y in its closure. We put f*(z) = f(z) — f(a) — C -
(z — a). Applying Lemma 1 by virtue of (2. 9 ), we have
Ar(ay)
O (f*,Sp(a,t)) £”(a,t) dt < / 1) @™ Oxriay () dH™ () ,

r(a.y) D(r(a.y),2r(a,y)) '
where 0,44 (z) is defined in ( 3. 14).

The mapping f*(z) is weakly (v, v)-monotone close to @ and by virtue of ( 3. 10 ) for
every t, r(a,y) <t < Ar(a,y), and some constant A < oo the following estimates hold

|£*(y) = f(a)|* < osc™(f*, Bp(a,t)) < AQ(f*,Sp(a,t)).

From this we obtain

Ar(a,y)
£ ) — £ @) / ¥ (a,) dt <
r(a,y)
=4 / 1£'(z) = ClI" oar(ay) () dH"(2).

D(r(a,y),Ar(a,y))
The assumption ( 3. 15 ) implies ( 1. 1) (and, respectively, ( 1. 3 )). Theorem is proved. [

Acknowledgements

The author is indebted to reviewers and students of VolGU Ol’ga and Oleg Yakshew for
a number of useful remarks and corrections.

REFERENCES

[1] O. Teichmiiller, Untersuchungen iiber konforme und quasikonforme Abbildung, Deutsche Math., v. 3, 1938,
621-678.

[2] P.P. Belinskii, Behaviour of quasiconformal mapping at a isolated singular point, Uch. zap. L’vov un-ta,
v. 29, ser. mech.-math., n. 6, 1954, 58-70 (in Russian).

[3] H. Wittich, Neuere untersuchungen iiber eindeutige analytische funktionen, Springer - Verlag, Berlin -
Gottingen - Heidelberg, 1955.

[4] JuJu. Trochimchuk, Differentiation, inner maps and criterions of analyticity, Kiew, In-t mathem. NAN
Ukrainy, 2007 (in Russian).

[5] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin - Heidelberg - New York
etc., 1992.

[6] E.D. Callender, Holder-continuity of N-dimensional quasiconformal mappings, Pacific J. Math., v. 1, 1960,
49-515.



50 V.M. Miklyukov

[7] V.M. Miklyukov, A modification of “Lenght and Area” principle on abstract surfaces, Uzbek Mathematical
Journal, 2009, n. 1, 68-79 (in Russian).
[8] V.M. Miklyukov, Some conditions for the existence of the total differential, Sib. math. j., v. 51, n. 4, 2010,
639-647.
[9] V.M. Miklyukov, Approximation of function close to singularity, Notes of seminar “Superslow processes™,
n. 4, Volgograd: [zd-vo VolGU, 2009 (in Russian).
[10] Lars V. Ahlfors, Lectures on Quasiconformal Mappings; with addit. chapters by C.J. Earle ... [et al.]. - 2nd.
ed., University lecture series; v. 38, American Mathem. Soc. Providence, Rhode Island, 2006.
[11] S.L.Krushkal’, Quasiconformal mappings and Riemann surfaces, V.H. Winston & Sons, Washington, D.C.,
1979.
[12] V.M. Miklyukov, Geometrical analysis: differential forms, almost solutions, almost-quasiconformal maps,
Volgograd: Izd-vo VolGU, 2007 (in Russian).
[13] G.D. Suvorov, Families of plane topological maps, Novosibirsk: Izd-vo SO AN SSSR, 1965 (in Russian).
[14] S. Saks, Theory of the integral, Warsaw, 1939.
[15] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in advanced Mathe-
matics, CRC Press, Boca Raton — New York — London — Tokyo, 1992.
[16] H. Federer, Geometric measure theory, Springer-Verlag, Berlin, 1969.
[17] A.Kufuner, O. John, and S. Fugik, Function spaces, Noordhoff International Publishing, Leyden, 1977.
[18] V.M. Miklyukov, Introduction to nonsmooth analysis, 2-nd edition, Volgograd: Izd-vo VolGU, 2008 (in
Russian).
[19] J. Lelong-Ferrand, Représentation conforme et transformations a intégrale de Dirichlet bornée, Gauthier—
Villars, Paris, 1955.
[20] O. Martio and J. Maly, Lusin’s condition (V) and mappings of the class W™, J. Reine Angew. Math.,
b. 485, 1995, 19-36.
[21] G.D. Suvorov, Generalized “lenght and area” principle in the theory of maps, Kiew: 1zd-vo "Naukova
Dumka’, 1985 (in Russian).
[22] S.K. Vodop’yanov, Differentiability of maps of Carno groups of sobolev classes, Mathem. sb., v. 194, n. 6,
2003, 67-86 (in Russian).
[23] Ju.G. Reshetnyak, Space mappings with bounded distortion, Novosibirsk: Izd-vo ”Nauka”, 1982 (in Rus-
sian).
[24] Ju.G. Reshetnyak, Theorems of stability in geometry and analysis, Novosibirsk: 1zd-vo ”Nauka”, 1982 (in
Russian).
[25] J. Heinonen, T. Kilpeldinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations,
Oxford: Clarendon Press. 1993.



Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 42 (2010) pp. 51-56

Common Fixed Point Theorem for Weakly Compatible Maps Satisfying E.A.
Property in Intuitionistic Fuzzy Metric Spaces

Saurabh Manro and S.S. Bhatia
School of Mathematics and Computer Applications
Thapar University, Patiala-147 004
India

Sanjay kumar
Deenbandhu Chhotu Ram University of Science and Technology
Murthal (Sonepat)
India

Abstract. In this paper, we use the notion of E.A. property in intuitionistic
fuzzy metric space and prove a common fixed point theorem for weakly
compatible mappings using this property.

AMS (MOS) Subject Classification Codes: 47H10, S4H25

Key Words: Intuitionistic fuzzy metric space, E.A property, Weakly compatible maps.

1. INTRODUCTION

Atanassove[3] introduced and studied the concept of intuitionistic fuzzy sets as a gener-
alization of fuzzy sets. In 2004, Park[9] defined the notion of intuitionistic fuzzy metric
space with the help of continuous t-norms and continuous t-conorms. Recently, in 2006,
Alaca et al.[2] using the idea of Intuitionistic fuzzy sets, defined the notion of intuitionistic
fuzzy metric space with the help of continuous t-norm and continuous t- conorms as a gen-
eralization of fuzzy metric space due to Kramosil and Michalek[7]. In 2006, Turkoglu[12]
proved Jungck’s[6] common fixed point theorem in the setting of intuitionistic fuzzy met-
ric spaces for commuting mappings. In this paper, we use the notion of E.A. property
in intuitionistic fuzzy metric space and prove a common fixed point theorem for weakly
compatible mappings using this property.

2. PRELIMINARIES

The concepts of triangular norms (t -norm) and triangular conorms (t -conorm) are known
as the axiomatic skelton that we use, are characterization of fuzzy intersections and union
respectively. These concepts were originally introduced by Menger [8] in study of statisti-
cal metric spaces.

Definition 1. A binary operation * : [0,1] x [0,1] — [0,1] is continuous t-norm if * is
satisfies the following conditions:
51
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(i) * is commutative and associative;

(ii)* is continuous;

(iii)a * 1 = a foralla in [0,1];

(iv)axb < cxdwhenevera < cand b < dforall a,b,¢,d € [0,1].

Definition 2. A binary operation ¢ : [0,1] x [0,1] — [0, 1]is continuous t-conorm if ¢ is
satisfies the following conditions:

(i) ¢ is commutative and associative;

(i) ¢ is continuous;

(iiao0=aforallac|0,1];

(ivyaob < codwhenevera < cand b < dforalle,b,c,d € [0,1].

Alaca et al.[2] defined the notion of intuitionistic fuzzy metric space as follows :

Definition 3. A 5-tuple (X, M, N, x,¢) is said to be an intuitionistic fuzzy metric space
if X is an arbitrary set, * is a continuous t-norm, < is a continuous t-conorm and M, N are
fuzzy sets on X2 x [0, 0o) satisfying the following conditions:

) M(z,y,t) + N(z,y,t) < 1forallx,yin X and ¢ > 0;

(il M(z,y,0) =0 forall x, y in X;

(iii) M(z,y,t) = 1 forallx,yin X and ¢t > 0 ifand only if z = y;

(iv) M(z,y,t) = M(y,z,t) forallx, yin X and £ > 0;

V) M(z,y,t) « M(y,z,8) < M(x,2,t+s) forallx,y,zin X and s,7 > 0;

(vi) forall x,y in X, M(z,y,.) : [0,00) — [0,1] is left continuous;

(Vii)tEIglo M(z,y,t) =1forall x,yin X and t > 0;

(viii) N(z,y,0) = 1 forall x, y in X;

(ix) N(z,y,t) = 0forallx,yin Xand ¢ > 0 ifand only if z = y;

x) N{z,y,t) = N(y,z,t) forallx,y in X and £ > 0;

(xi) N(z,y,t) o N(y, z,8) > N(z,2,t + s) forallx,y,zin X and s,t > 0;

(xii) forall x, y in X, N(z,y,.) : [0,00) — [0,1] is right continuous;

(xiii) tll'rgo N(z,y,t) = 0forall x, y in X.

Then (M, N) is called an intuitionistic fuzzy metric. The functions M(x, y, t) and N(x,
y,t) denote the degree of nearness and the degree of non-nearness between x and y w.rt. t
respectively.

Remark 4. Every fuzzy metric space (X, M, *) is an intuitionistic fuzzy metric space of
the form (X, M, 1 —~ M, *,¢) such that t-norm * and t-conorm ¢ are associated as z o y =
1~((1—2)*(1—y)) forallx,yinX.

Remark 5. [2] In intuitionistic fuzzy metric space (X, M, N,*,¢), M(x, y, *) is non-
decreasing and N(z, y, ¢) is non-increasing for all x, y in X.

Definition 6. [2] Let (X, M, N, , <) be an intuitionistic fuzzy metric space. Then

(a) a sequence {z,} in X is said to be Cauchy sequence if, for all £ > 0 and p > 0,
lim M(zp4p,2n,t) =1and lim N(zpyp,2,,t) =0.

n—00 n—ooc

(b) a sequence {z,} in X is said to be convergent to a point z € X if, forall ¢t > 0,
lim M(z,,z,t) =1and lim N(z,,z,t)=0.

n—o0
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(¢) (X, M, N,*,0) is said to be complete if and only if every Cauchy sequence in X is
convergent.

Example 1. Let X={1/n:n =1,2,3,...} U{0} and let * be the continuous t-norm and ¢
be the continuous t-conorm defined by a * b=ab and a © b = min{l,a + b} respectively,
for all a,b € [0,1]. Foreacht € (0,00) and x, y in X, define (M, N) by M(x, y, t) =
ey if 6> 0, M(x, y, 9= 01if ¢ = 0, and N(x, y, ) = t’j;ﬁ'yl ifz > 0,N(x, y, )= 1 if
t = 0. Clearly, (X, M, N, x, o) is complete intuitionistic fuzzy metric space.

Definition 7. [12] A pair of self mappings ( f, g) of a intuitionistic fuzzy metric space
(X, M, N,x o} is said to be commuting if

M(fgx,gfx,t)=1and N(fgx, gfx,t)=0forallxin X .

Recently, Amari and Moutawakil[1] introduced a generalization of non compatible maps
as E.A. property.

Definition 8. [1] Let A and S be two self-maps of a metric space (X,d). The pair (A,S) is
said to satisfy E.A. property, if there exists a sequence {z,} in X such that lim Az, =
n—oo

lim Sz, =t, for sometin X.
n—o0

Example 2. Let X = [0, 4+00). Define S, T: X — X by Tx = £ and Sx = 2 , for all x in X.
Consider the sequence {z,} = {1/n} . Clearly 11m Sz, = hm Tmn = 0 Then S and

n—o0
T satisfy E.A. property.
Example 3. Let X = [2, +00). Define S, T : X—X by Tx = x+1 and Sx = 2x+1 for all

x in X. Suppose that the E.A. property holds. Then, there exists in X, a sequence {z, }

satisfying hm Sz, = lim Tz, = z for some z in X. Therefore, lim z, = z — 1 and
n—oc n—00

1
lim z, = ZT Thus, z =1, which is a contradiction, is said to satisfy the E.A. property

if there exist a sequence {z, } in X such that since 1 is not contained in X. Hence S and T
do not satisfy E.A. property.

Definition 9. A pair of self mappings ( £, g ) of a intuitionistic fuzzy metric space
(X, M, N, 0) is said to satisfy the E.A. property if there exist a sequence {z,} in X
such that lim M(fz,,gz,,t) =1and lim N(fz,,g9z,,t) = 0.

n—o0 n—o0

Example 4. Let X = [0,00). Let us consider (X, M, N, x,0) be an intuitionistic fuzzy

metric space as in example 1. Define T, S : X — [0, 00) by Tx = £ and Sx = . Now,
lim M(Sz,,Tz,,t) =1and lim N{(Sz,,Tz,,t) = 0. Clearly S and T satlsﬁes E.A.
n—o0 n—oo

property.

Jungck [6] introduced the notion of weakly compatible maps as follows:

Definition 10. A pair of self mappings ( f, g ) of a intuitionistic fuzzy metric space
(X, M, N, *,0) is said to be weakly compatible if they commute at the coincidence points
i.e. Tu= Su for some u in X , then TSu = STu.
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Alaca [2] proved the following result:

Lemma 11. Let (X, M, N, *,0) be intuitionistic fuzzy metric space and for all x , y in
X, t > 0andif for a number k € (0,1), M(z,y,kt) > M(z,y,t) and N(z,y, kt) <
N(z,y,t) thenx =y.

3. WEAKLY COMPATIBLE MAPS AND E.A. PROPERTY

Turkoglu et al.[12] proved the following Theorem:

Theorem 12. Let 4, B, S and T be self maps of complete intuitionistic fuzzy metric space
(X, M, N, *,0) with continuous t-norm and continuous t- conorm defined by a x a > a
and (1 —a)o (1 —a) < (1—a)forall ain|0,1], satisfying the following conditions:

(D) A(X) C T(X),B(X) C S(X),

(2) S and T are continuous,

(3) The pairs (4, S) and (B, T) are compatible maps,

(4) forallx, yin X, kin (0,1),t > 0

M(Az, By, kt) > M(Sz,Ty,t) * M(Az,Sz,t) » M(By,Ty,t) * M(By, Sz,2t) *
M(Az,Ty,t) and

N(Az, By, kt) < N(Sz,Ty,t)oN(Az, Sz,t)oN(By,Ty,t)oN(By, Sz, 2t)oN(Az, Ty, t),
Then A, B, S and T have a unique common fixed point in X.

Now,we generalize theorem 12 for weakly compatible maps using E.A property. Our
theorem generalise theorem 12 in the following way:

(a) relaxing the continuity requirement of maps and,
(b) relaxing the completeness of the space X.

Theorem 13. Let 4, B, S and T be self maps of intuitionistic fuzzy metric space (X, M, N, %,0)
with continuous t-norm and continuous t- conorm defined by a * b = min{a, b} and
aob=maz{a,b} forall a, b in [0, 1] satisfying the following conditions:

(i) forallx,yinX, kin (0,1),t >0

(ii) (4, S) and (B, T) are weakly compatible,

(iii) (4, S) or (B, T) satisfies E.A. property,

(iv) A(X) C T(X), B(X) C S(X),

Ifone of A, B, S and T is a complete subspace of X then A, B, S and T have unique common
Jixed point in X.

Proof: Suppose the pair (B, T) satisfies the E.A. property. Then there exists a sequence
{2} in X such that lim Bz, = lim Tz, = p for some p in X. Since B(X) C S(X),

n—oo n—o0
there exists a sequence {y,} in X such that Bz, = Sy, = p. Hence lim Sy, = p. We
n—od
shall show that lim Ay, = p. From (i), we have
n—od
M(Ay,, By, kt) > M(Syn, Txn,t) * M(AYn, Syn,t) * M (Byn, Tyn, t)*
M(Bzy, Syn, 2t) * M{Ayn,Tz,,t) and
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N(Ayn, Brp, kt) < N(Syn, TTn,t) © N(Ayn, Syn,t) © N(Bxy, Ty, t)o

N(Bzy, Syn,2t) o N(Ayn, Tz, t),

Taking limit as n — oo, we get M (Ayn,p, kt) > M(Ayn,p,t) and N(Ay,,p, kt) <
N(Ayn,p,1).

Using Lemma 11, we have lim Ay, = lim Sz, = p. Suppose that S(X) is a com-

n—00

plete subspace of X. Then p = Su for some u 1n X. Subsequently, we have hm Ay, =
lim Sz, = lim Bz, = hrn Tz, = p = Su. Now, we shall show that Au Su From

n—o0 n—0o0

(4), we have

M (Au, Bz, kt) > M(Su, Tz, t)*M(Au, Su,t)* M (Bzy, TT,,t)x M (Bz,, Su, 2t)*
M(Au,Tzp,t) and

N(Au, Bxy, kt) < N(Su,Txn,t) o N(Au, Su,t) o N(Byy, Tz, t) o N(Bzn, Su, 2t) o
N(Au,Tzy,t),

Taking limit as n — oo we get M (Au, Su, kt) > M(Au, Su,t) and N(Au, Su, kt) <
N(Au, Su,t).

Now by using Lemma 11, we have Au = Su. Therefore (A, S) have coincidence point.
The weak compatibility of A and S implies that ASu = SAu and thus AAu = ASu = SAu
=SSu. As A(X) C T(X), there exists v in X such that Au = Tv. We claim that Tv =
Bv. From (i), we have M(Au, Bv, kt) > M(Su,Tv,t) * M(Au, Su,t) * M (Bv,Tv,t) *
M(Bv, Su,2t) * M(Au,Tv,t) and N(Au, Bv,kt) < N(Su,Tv,t) o N(Au, Su,t) ¢
N(Bv,Tv,t) o N(Bv, Su,2t) o N(Au, Tv,t), Now by using Lemma 11, we have Au =
Bv. Hence, Tv = Bv. Thus we have Au= Su = Tv = Bv. The weak compatibility of B and
T implies that BTv = TBv = TTv = BBv. Finally, we show that Au is the common fixed
point of A, B, S and T. From (i), we have

M(Au, AAu, kt) = M(AAu, By, kt) > M(SAu, Tv, t)*M (AAu, SAu, t)*M (Bv, Tv, t)*
M(Bv, SAu,2t) * M(AAu,Tv,t) and N(Au, AAu, kt) = N(AAu, Bv, kt)

< N(SAu,Tv,t)oN(AAu,SAu,t)o N(Bv,Tv,t)o N(Bv,SAu, 2t)o N(AAu, Tv,t),
we have M (Au, AAu, kt) = M(AAu, By, kt) > M(AAu, Bu,t)

and N(Au, AAu, kt) = N(AAu, Bv, kt) < N(AAu, Bu,1t).

Now, the use of Lemma 11 gives AAu = Bv =Au and thus, AAu = Au. Therefore, Au
= AAu = SAu is the common fixed point of A and S. Similarly, we prove that Bv is the
common fixed point of B and T. Since Au = By, Au is common fixed point of A, B, S, and
T. The proof is similar when T(X) is assumed to be a complete subspace of X. The cases
in which A(X) or B(X) is a complete subspace of X are similar to the cases in which T(X)
or S(X), respectively is complete subspace of X as A(X) ¢ 7(X) and B(X) C S(X).
Finally now we show that the common fixed point is unique. If possible, let zo and yy be
two common fixed points of A, B, S, and T. Then by condition (i),

M(zo,yo, kt) = M(Tzg, Byo, kt)

> M(S.’II(), Tyo, t)*M(A.’lIo, S.’l)o, t)*M(By(), Ty(), t)*M(Byo, S.’l)o, 2t)*M(A$0, Ty(), t)
and N (zg,yo, kt) = N(T'zo, Byo, kt)

< N(S.’l)o, Tyo, t)ON(ALE(j, S.’L‘(), t)ON(Byo, Tyo, t)ON(Byo, SLE(), 2t)<>N(A.’lI0, Ty(), t),
By fixed point property and using intuitionistic fuzzy metric space, we get

M(zqg,y0,kt) > M(2o,y0,t) and N(zo, yo, kt) < N(zo,v0,1) .

This implies, by using Lemma 11 that zy = yo. Therefore, the mappings A, B, S, and T
have a unique common fixed point.

Example 5. Let (X, M, N, *,¢) be a intuitionistic fuzzy metric space with X = [0, 1], t-
norm * and t-conorm ¢ defined by @ * b = min{a, b} and a © b = max{a, b} where a, b
in [0, 1], respectively. Let (M, N) is the intuitionistic fuzzy set on X? x (0, cc), defined
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by M(x, y, )= (exp(ZZ4)~! for all t > 0, M(x, y, t)= 0 when t = 0 and N(x, y, 1)
=[(exp(|—z;—y|))—1][(exp(J3§ll))_1], N(x, y, t) = 1 when ¢ = 0. Then it is well known that
(X, M, N, %, 0) is a intuitionistic fuzzy metric space. Let us define self maps A, B, S, and
Ton X such that Ax = & , Tx = § ,Bx =55 , Sx =  then for k € [1/16,1)
M(Az, By, kt) = (exp(12/2-122) =1
>(exp( PAFL2) =1 = M(Sx, Tx, 1)
> M(Sz,Ty,t) « M(Ax, Sz, t) » M(Bz,Ty,t) «+ M (By, Sz, 2t) * M(Az,Ty,t) and
N (A, By, kt)={(exp(L247 222y 1]j(exp( [2/e47u/82y) -1y
<[(exp( BT 1] [(exp(A22Y) ~1] = N(Sz, Ty, 1)
< N(Sx, Ty, t) o N(Ax, Sx, t) o N(Bx, Ty, t) o N(By, Sx, 2t) o N(Ax, Ty, t).

Clearly,
(a) condition (i) of above theorem holds,
(b) for sequence {z,} = {1/n}, pairs (A, S ) and (B,T) satisfies E.A. property,
(©) A(X) C T(X), B(X) C §(X),
(d) one of A(X), B(X),S(X) or T(X) is complete subsets of X,
(e) the pairs (A , S) and (B , T) are weakly compatible at x = 0 which is the coincident
point of the maps A, B, Sand T.
Thus all the conditions of Theorem 13 are satisfied and also x = 0 is the unique common
fixed point of A, B, Sand T.
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1. INTRODUCTION

N. Levine [11] introduced the notion of semi-open sets in topological spaces. A. Csaszar
[7,8] defined generalized open sets in generalized topological spaces. In 1975, Mahesh-
wari and Prasad [12] introduced concepts of semi-T} -spaces and semi- Rg-spaces. In 1979,
S. Kasahara [10] defined an operation « on topological spaces. Carpintero, et. al [6] in-
troduced the notion of -semi-open sets as a generalization of semi-open sets. B. Ahmad
and F.U. Rehman [1, 14] introduced the notions of v-interior, y-boundary and ~y-exterior
points in topological spaces. They also studied properties and characterizations of (v ,3
)-continuous mappings introduced by H. Ogata [13]. In [2-4], B. Ahmad and S. Hussain in-
troduced the concept of ~o-compact, v*-regular, y-normal spaces and explored their many
interesting properties. They initiated and discussed the concepts of v*-semi-open sets , v*-
semi-closed sets, y*-semi-closure, v*-~semi-interior points in topological spaces [5,9]. In
[9], they introduced A7Y-set and A*” -set by using ~*-semi-open sets. Moreover, they also
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introduced ~-semi-continuous function and -y-semi-open (closed) functions in topological
spaces and established several interesting properties.

In this paper, we continue studying the properties of -y-semi-continuous functions and
~-semi-open function introduced by B. Ahmad and S. Hussain [5].

Hereafter, we shall write space in place of topological space in the sequel.

2. PRELIMINARIES

We recall some definitions and results used in this paper to make it self-contained.

Definition 1. [13] Let (X,7) be a space. An operation vy : 7 — P(X) is a function from 7
to the power set of X such that V. C V7 | for each V € 7, where V7 denotes the value of y
at V. The operations defined by v(G) = G, ¥(G) = cl(G) and v(G) = intcl(G) are examples
of operation ~.

Definition 2. [13] Let A be a subset of a space X. A point x € A is said to be ~y-interior
point of A, if there exists an open nbd N of x such that N7 C A. The set of all such points
is denoted by int. (A). Thus

inty(A)={zr€A:z€ NeTand N" C A} C A
Note that A is y-open [13] iff A =int,(A). A set A is called - closed [13] iff X-A is -
open.

Definition 3. [10] A point x € X is called a y-closure point of A C X, if U" N A # ¢, for
each open nbd U of x. The set of all y-closure points of A is called y-closure of A and is
denoted by cl,(A). A subset A of X is called y-closed, if cl,(A) CA. Note that c,(A) is
contained in every y-closed superset of A.

Definition 4. [14] The vy-exterior of A, written ext,(A) is defined as the ~y-interior of
(X — A). That is, int,(A) = ext (X — A).

Definition 5. [14] The -y-boundary of A, written bd(A) is defined as the set of points
which do not belong to y-interior or the y-exterior of A.

Definition 6. [13] An operation ~y on 7 is said be regular, if for any open nbds U,V of x €
X, there exists an open nbd W of x such that U" N V7Y D W7,

Definition 7. [13] An operation -y on 7 is said to be open, if for every open nbd U of each
x € X, there exists y-open set B such that z € Band U” C B.

Definition 8. [2]Let A C X. A point z € X is said to be y-limit point of A, if U N {A —
{z}} # ¢, where U is a y-open set in X. The set of all y-limit points of A denoted A2 is
called y-derived set. '

Definition 9. [9] A subset A of a space (X,7 ) is said to be a v*-semi-open set, if there
exists a -y -open set O such that O C A C ¢l,(O). The set of all y*-semi-open sets is
denoted by SO« (X).

Definition 10. [5] A function f : (X, 7) — (Y, 7) is said to be y-semi-continuous, if for
any y-open B of Y, f~1(B) is v*-semi-open in X.

Definition 11. [5] A function f : (X,7) — (Y, 7) is said to be y-semi-open (closed), if
for each y-open (closed) set U in X, f(U) is y*-semi-open (closed) in Y.
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Definition 12. [5] A set A in a space X is said to be v*-semi-closed, if there exists a
v-closed set F such that int, (F) C AC F.

Proposition 13. [5] 4 subset A of X is v*-semi-closed if and only if X — A is y*-semi-open.

Definition 14. A subset A of X is said to be y-semi-nbd of a point z € X, if there exists
a y*-semi-open set U suchthatz € U C A.

Definition 15. [9] Let A be a subset of space X . The intersection of all v*-semi-closed
sets containing A is called v*-semi-closure of A and is denoted by scl.,«(A). Note that A
is v*-semi-closed if and only if scl.,- (A) = A.

Definition 16. [5] Let A be a subset of a space X . The union of all v*-semi-open sets of
X contained in A is called y*-semi-interior of A and is denoted by sint,-(A) .

Lemma 17. Let A be a subset of a space X. Then x € scly+(A) if and only if for any
~-semi-nbd N of x in X, AN N, # ¢.

Proof. Let z € scl«(A) .Suppose on the contrary, there exists a y-semi-nbd N, of x in
X such that AN N, # ¢. Then there exists U € SO,-(A) such that z € U C N,.
Therefore, U M A = ¢, so that A C X — U. Clearly X — U is y*-semi-closed in X
and hence scly+(A) C X —U. Since z ¢ X — U, we obtain z ¢ scl,-(A). This is
contradiction to the hypothesis. This proves the necessity.

Conversely, suppose that every y-semi-nbd of x in X meets A. If z ¢ scl,« (A), then by
definition there exists a y*-semi-closed F of X such that A C F' and x ¢ F. Therefore we
havez € X—F € §0,-(X). Hence X — F is y-semi-nbd of x in X. But (X —F)NA = ¢.
This is contradiction to the hypothesis. Thus z € scl- (A). O

3. v-SEMI-OPEN FUNCTIONS

Theorem 18. Let f : X — Y be a function from a space X into a space Y and v is an
open, monotone and regular operation. Then the following statements are equivalent:

(1) f is y-semi-open.

(2) f(inty(A)) C sin-(f((A)) for each subset A of X.

(3) For each z € X and each y-open-nbd U of x, there exists a y-semi-nbd V of f(z) such
that V C f(U).

Proof (1) = (2). Suppose that f is y-semi-open, and let A be an arbitrary subset
of X. Since f(int,(A)) is y*-semi-open and f(int,(A)) C f(A), then f(int,(A)) C
sinp (F((A)).

(2) = (3). Let U be an arbitrary y-open-nbd of z € X. Then there exists y-open set
O such that z € O C U. By hypothesis, we have f(O) = f(int,(0)) C sin«(f((O))
and hence f(O) C sin«(f((O)). Therefore it follows that f(O) is y-semi-open-nbd in
Y such that f(z) € f(O) C f(U). This proves (3).

(3) = (1). Let U be an arbitrary y-open set in X. For each y € f(U), by hypothesis
there exists a y-semi-nbd V,, of y in Y such that V;, C f(U). Since Vj, is a y-semi-
nbd of y, there exists a y*-semi-open set A, in Y such that y € A, C V. Therefore
FU)=U{4y : y € f(U)} is a y*-semi-open in Y, since is + regular [9]. This shows that
f is a y-semi-open function. O

Theorem 19. A4 bijective function f : X — Y is y-semi-open if and only if f ~*(scl+(B))
C cly(f~1(B)) for every subset B of Y, where vy is an open operation.
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Proof. Let B be an arbitrary subset of Y. Put
U=X—cl(f(B) 3.1

Clearly U is a «y-open set in X. Then by hypothesis, f(U) is a v*-semi-open set in Y, or
Y —f(U) is y*-semi-closed set in Y. Since f is onto, from (3. 1), it follows B C Y~ f(U).
Thus we have scl,«(B) C Y — f(U). Since f is one-one, we have f~*(scl,«(B)) C
YY) = f71f(U) = X — f7Lf(U) € X — U = el (f*(B)). This proves the
necessity.

Conversely, let U be an arbitrary -open set in X. Put B = Y — f(U). Since f is
bijective, therefore by hypothesis, f(U) N scl,«(B) = f(U N f~(scl«(B))) € f(UN
cl(f1(B))). Since U is y-open, therefore by Lemma 2(3) [14], we have Unecl, (f ~1(B))
C (U N f~4B)). Moreover, it is obvious that U N f~!(B) = ¢. Thus we have
f(U) N scly«(B) = ¢ and hence scly-(B) C Y — f(U) = B. Therefore B is a y*-semi-
closed in Y and hence f(U) is a v*-semi-open set in Y. This proves that f'is a y-semi-open
mapping. O

Definition 20. [13] A function f : (X, 1,v) — (Y, 4, ) is said to be (v, 3)-continuous, if
for each € X and each open set V containing f(z), there exists an open set U such that
x € Uand f(U?) C VP, where v and 3 are operations on 7 and § respectively.

Definition 21. [13] A function f : (X, 7,v) — (Y, 4, §) is said to be (v, 3)-open (closed),
if for any y-open (closed) set A of X, f{A) is «v-open (closed) in Y.

Theorem 22. [1] Let f : (X, 7,v) — (Y,0,8) be a function and 3 be an open operation
on Y. Then f is (v, 8)-continuous if and only if for each (B-open set Vin Y, f~1(V) is
y-open in X.

Theorem 23. [1] Let f : (X, 7,v) — (Y,0,8) be a function and 3 be an open operation
on Y. Then the following are equivalent:

(1) f is (v, 3)-open .

(2) FHclp(B)) C el (F1(B)).

(3) F(bda(B)) C bdy (£~ (B)) for any subset B of Y.

Theorem 24. If a function f : (X,7,v) — (Y,4,0) is a (v, 5)-open and a (v, B)-
continuous, then the inverse image f~1(B) of each [3*-semi-open set B in Y is v*-semi-
open in X, where (3 is an open operation on Y.

Proof. Let B be an arbitrary 3*-semi-open set in Y. Then there exists J-open set V in
Y such that V. C B C clg(V). Since fis (v, 3)-open, using Theorem 23, we have
fYV) C f7YB) C FHds(V)) C el,(f~1(V)). Since fis (v, 3)-continuous and
V is -open in Y, by Theorem 22, f~'(V) is y-open in X. This shows that f~1(B) is
~*-semi-open set in X, O

Theorem 25, Let X, Y and Z be three spaces and let f : X — Y be a function, g : Y — Z
be an injective function and gof : X — Z is a y-semi-open function. Then we have:

(1) If f is (y, B)-continuous and surjective, then g is ~y-semi-open.

(2) If g is (8, &)-open, (B, &)-continuous and injective, then f is y-semi-open, where (3 is
open operation on Y.

Proof. (1) Let V be a S-open set in Y. Then f~1(V) is y-open in X, because f is (v, 3)-
continuous. Since gof is y-semi-open and f is surjective, therefore
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g(V) = (gof)(f~1(V)) is a*-semi-open in Z. This shows that g is a y-semi-open func-
tion.

(2) Since g is injective, therefore for A C X, f(A) = g~ '(g(f(A))). Let U be a y-open
set in X, then gof(U) is a*-semi-open. Thus by Theorem 24, g~ (g(f(U))) = f(U) is
(*-semi-open in Y. This shows that f is a y-semi-open function. O

Let B C X, vy : 7 — P(X) be an operation. We define vg : 75 — P(X) as
v8(U N B) = +(U) N B. From here g is an operation and satisfies that ¢, (U N B) C
e (UNB) C el (U) Nl (B). Using this fact we prove the following:

Theorem 26. Let X be a space and B a ~v*-semi-open set in X containing a subset 4 of X.
If A is ~v*-semi-open in the subspace B, then 4 is ~v*-semi-open in X, where ~y is a regular
operation.

Proof. Let A be yg-semi-open in the subspace B. Then there exists a yz-open set Ug in B
such that Ugp C A C ¢l.,,,(Ug). Since Up is yg-open in B, there exists a y-open set U in
X such that Ugp = U N B[4]. Thuswehave UNB C A Ccl,,(UNB) Cecl (UNB) =
cl,(A) Nely(B). Since B is y*-semi-open set in X and U is y-open in X, therefore U N B
is y-open in X. Consequently, A is a y*-semi-open set in X. |

Theorem 27. Let X and Y be spaces. If a bijective function f : X —'Y is a y-semi-open,
then for each ~y-open set V. (# ¢) in Y fls—(y) : F~Y(V) — V is y-semi-open, where  is
a regular operation.

Proof. Let Uy be an arbitrary v¢-1(y)-open set in f ~1(V). Then there exists a y-open set
U in X such that Uy = U N =1 (V). Now we have [f| ;-] (Uv) = fFUNF7H(V)) =
FUYNV. Since f(U) is y*-semi-open and V is y-open, f(U)NV is y*-semi-open. Hence
[f1 7= ()| (Uv) is also ~{ -semi-open in V. This shows that f|s-1 vy : f71(V) - Visa
~y-semi-open mapping. t

Theorem 28. A bijective function f : X — Y is vy-semi-open if and only if for any subset
V of Y and for any ~v-closed set F of X containing f=1(V), there exists a ~v*-semi-closed
set G of Y containing V such that f 1 (G) C F.

Proof LetV CY and F be a y-closed set of X containing f~(V). PutG =Y — f(X —
F). Since f is y-semi-open, so G is y*-semi-closed sets in Y . As f is bijective, it follows
from f~1(V) C F that V C G. Calculations give f~*(G) C F.

Conversely, suppose U is v-open set. Put V = Y — f(U). Then X — U is ~v-closed
set in X containing f~1(V'). By hypothesis, there exists a v*-semi-closed set G of Y such
that V C G and f~1(G) C (X — U). On the other hand, it follows from V C G that
f(U)= (Y —V) C (Y — G). Therefore, we obtain f(U) = (Y — G) € SO,-(Y). This
shows that f is y-semi-open. O

Lemma 29. [5]The following properties of a subset A of X are equivalent:
(1) A is v*-semi-closed.

(2) int,(cly(A)) C A

(3) X — Ais v*-semi-open.

Theorem 30. If f : X — Y is (v, 5)-open and (v, B)-continuous mapping, then the
inverse image {~1(B) of each 3*-semi-closed B in Y is v*-semi-closed in X, where (3 is an
open operation on Y.

Proof. This follows from Theorem 24 and Lemma 29. O
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Theorem 31. Let f : X — Y be surjective and g : Y — Z be an injective function and
let gof : X — Z be a y-semi-closed function. Then

(1) If fis (v, B)-continuous and surjective, then g is (3-semi-closed.

(2) If g is (8, o)-open, (3, a)-continuous and injective, then f is y-semi-closed, where (3
is an open operation on Y.

Proof. (1) Suppose H is an arbitrary (3-closed set in Y. Then f~1(H) is vy-closed in X be-
cause f is (7, 3)-continuous. Since gof is y-semi-closed and f is surjective, gof (f ' (H))
C g(f(f~'(H))) = g(H), is a*-semi-closed in Z. This implies that g is S-semi-open
function. This proves (1).

(2) Since g is injective so for every subset A of X, f(A) = g1 (g(f(A))). Let F be an
arbitrary ~y-closed set in X. Then gof(F'} is v*-semi-closed. It follows immediately from
Theorem 30 that f(F') is v*-semi-closed set in Y. This implies that f is y-semi-closed. [

4. v-SEMI-CLOSED FUNCTIONS

Theorem 32. Let v be an open and monotone operation. A function f : X — Y is
~y-semi-closed if and only if f(cl,(A)) 2 int.(cl,(f(A))) for every subset A of X.

Proof. Suppose f is a y-semi-closed mapping and A is an arbitrary subset of X. Then
f(cly(A)) is v*-semi-closed in Y. Then by Lemma 29, we obtain
flcly(A)) 2 int,(cl,(f(cl,(A)))) 2 int,(cl,(f(A))). This implies that f(cl,(A)) 2
int, (cl, (£(4))).

Conversely, suppose that F is an arbitrary ~-closed set in X. Then by hypothesis, we
have int, (cl,(f(F))) C f(cl,(F)) = f(F). By Lemma 29, f(F) is v*-semi-closed in
Y. This implies that f is y-semi-closed. O

Recall [9] that the intersection of all v*-semi-closed sets containing A is called ~-
semi-closure of A and is denoted by scl,~(A). Clearly A is y*-semi-closed if and only
if scly+ (A) = A.

Theorem 33. Let v be an open and monotone operation. A function f : X — Y is
y-semi-closed if and only if scl,-(A) C f(cl,(A)) for every subset A of X.

Proof. Suppose f is a y-semi-closed mapping and A is an arbitrary subset of X. Then
f(cl,(A)) is y*-semi-closed. Since f(A) C f(cl,(A)), we obtain
scly (f(A)) C f(cl,(A)). This implies scly«(f(A)) C f(cly(4)). O

Sufficiency follows from Theorem 32.

Theorem 34. A surjective function f : X — Y is y-semi-closed if and only if for each
subset B in Y and each ~y-open set U in X containing f~1(B), there exists a v*-semi-
open set V in Y containing B such that {1 (V) C U, where  is a monotone and regular
operation.

Proof. Suppose B is an arbitrary subset in Y and U is an arbitrary -y-open set in X contain-
ing f~1(B). We put

V=Y-fX-U) 4.2)

Then V is v*-semi-open set in Y. Since f ~1(B) C U, calculations give B C V. Moreover,

by 4.2, wehave (V) = f~L(Y) — FI(F(X - U)) = X — fL(f(X —U)) C
X-(X-0U)=U.

Conversely, suppose that F is an arbitrary «y-closed set in X. Let y be an arbitrary point

inY — f(F), then f~}(y) € X ~ f~Y(f(F)) € X — F, and X — F is y-open in
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X. Hence by the hypothesis, there exists a y*-semi-open set V;, containing y such that
f~'(Vy) € X — F. This implies thatv € V;, CY — f(F). We obtain that Y ~ f(F) =
WUHVy vy € Y — f(F)} is v*-semi-open in Y, since union of any collection of ~*-semi-
open sets is v*-semi-open. Therefore f(F) is v*-semi-closed. O

5. v-SEMI-CONTINUOUS FUNCTIONS

Theorem 35. Let f : X — Y be a function and ~y is an open operation. Then the following
are equivalent:

(1) fis y-semi-continuous.

(2) int, (cl,(f71(B))) € f~(cly(B)) for each subset B of Y.

(3) flinty(cly(A))) C cl,(f(A)) for each subset A of X.

Proof (1) = (2). Let B be an arbitrary subset of Y. Then by (1), f~ ( ~(B)) is
~*-semi-closed set of X. Since B C cl,(B), by Lemma 29, we get f~!(cl,(B)) Q
int(cly(f~H(cly(B)))) 2 inty(cly (f~ 1(B)))lmphes that

int(cly(f71(B))) C f_l(Cl’v(B))-

(2) = (3). Let A be an arbitrary subset of X. Put B = f(A). Then A C f~'(B).
Therefore by hypothesis, we have int.,(cl,(4)) C int.(cl,(f~1(B))) C f~(cl,(B)).
Consequently, we have f(int, (cl, (A D) C FFie +(B)) € cly(B) = cl,(f(A)). This

gives (3).
(3) = (1). Let F be an arbitrary y-closed set of Y. Put A = f~!(F), then f(A) C F.
Therefore by hypothesis, we have

Flint (el (A))) € el (F(4) € cby(F) = F 6.3)
By 5. 3, we have int., (cl,(4)) C f—lf(int (cl, (A))) C F el (f(A)) C
el (F)) = £71(F), or int, (cl,(A)) C f~1(F),. By Lemma 29, f~'(F) isa '-

semi-closed set in X. This 1mp11es that f is y-semi-continuous. O

Definition 36. Let X be a space A C X and p € X. Then p is a v*-semi-limit point of
A, for all v*-semi-open set U containing p such that U N (A — {p}) # ¢. The set of all
~v*-semi-limit point of A is said to be v*-semi-derived set of A and is denoted by sd.,~ (4).

Clearly if A C B then
sd+(A) C sd,-(B) (5.4

Remark 37. From the definition, it follows that p is a v*-semi-limit point of A if and only
if p € scly« (A — {p}).

Theorem 38. The v*-semi-derived set, sd~, has the following properties:
(1) scly«(A) = AU sdy-(A).

(2) sdy+(AU B) = sd~(A) U sdy~(B). In general

(3) U; sdy+ (A) = sd,- (U;(A1))-

(4) sdy (sdy- (A)) C sdye (A).

(5) sclyx(sd = (A)) = sdy-(A).

Proof. (1) Letz € scl,~(A). Thenz € C, for every v*-semi-closed superset C of A. Now
() Ifz € A, thenz € AU sdy~(4).

(i) If z ¢ A, then we prove that z € scl,- (A4).

To prove (ii), suppose U is v*-semi-open set containing x. Then U N A # ¢, for otherwise,
A C X —U = C, where C is a v*-semi-closed superset of A not containing x. This
contradicts the fact that x belongs to every v*-semi-closed superset C of A. Therefore
x € sdy-(A) gives ¢ € AU sd4-(A).
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Conversely, suppose that x € A U sd.-(A), we show that z € scl«(A). Ifz € A
then z € scly«(A). If © € sd-(A), then we show that x is in every v*-semi-closed
superset of A. We suppose otherwise that there is v*-semi-closed superset C of A not
containing X. Then z € X — C = U(say), which is v*-semi-open and U N A = ¢. This
implies that z ¢ sd-(A). This contradiction proves that z € scl,+(A). Consequently
scly«(A) = AU sd~(A). This proves (1).

(2) sdy+ (AU B) C sdy+(A) U sd«(B).

Letz € sd«(AUB). Thenz € scl,«((AUB)—{z}) orz € scl» ((A—{z})U(B—{z})
implies = € scly-(A — {z}) or ¢ € scly«(B — {z}). This gives z € sd,«(A) or z €
sd~(B) . Therefore x € sd+(A) U sd,~(B) . This proves sd,-(AU B) C sd(A) U
sdy+ (B)

Converse follows directly by using the property 5. 4.

(3) The proof is immediate by property 5. 4.

(4) Suppose that z ¢ sd,«(A). Then z ¢ scly-(A — {z}). This implies that there
is v*-semi-open set U such that z € U and U N (4 — {z}) = ¢. We prove that
z ¢ sdy(sdy~(A)). Suppose on the contrary that © € sd-(sd,~(A)). Then z €
sclyx(sd+(A) — {z}). Since z € U, we have U N (sd+ (A) — {z}) # ¢. Therefore there
isaq # z such that g € U N (sd,~(A)). It follows that ¢ € (U — {z}) N (sd+(A) — {z}).
Hence (U — {z}) N (sd+ (A) —{z}) # ¢, a contradiction to the fact that (U N (sd.,~(A) —
{z}) = ¢. This implies that = ¢ sd.-(sd,~(A)) and so sd+ (sdy-(A)) C sdy+(A). This
proves (4).

(5) This is a consequence of (1), (2) and (4). |

Theorem 39. [5] Let f : X — Y be a function. Then the following are equivalent:
() f: X =Y is y-semi-continuous.

(2) scly(f71(A)) C f~(cl,(A)) for each subset A of Y.

Theorem 40. Let f : X — Y be afunction and v is an open operation. Then the following
are equivalent:

(1) f: X —Y is y-semi-continuous.

(2) f(sdy«(A)) C cly(f(A)) for any subset 4 of X.

Proof (1) = (2). Suppose that f is y-semi-continuous. Let A be any set in X. Since
cly(f(A)) is y-closed in Y. f~1(cly(A)) is y*-semi-closed in X. A C f~(f(A)) C
F7H(cly(£(A))) gives scly(A) C sclys (f7H(cly(F(A))) = f7(cly(f(A))). There-
fore f(sdy+(A)) C f(scly(A)) C ff el (f(A)) C cly(f(A)). Consequently,
Flsdye (A)) C el (F(A).

(2) = (1). Suppose that f(sdy+(A)) C cl,(f(A)), for A C X. Let B be any ~y-closed
subset of Y. We show that f ~1(B) is y*-semi-closed in X. By hypothesis, f (sd« (f~1(B)))
€y (F(f1(B))) € cly(B) = B or f(sdye(f}(B)) € B gives sc-(/~"(B)) C
f‘lf(sdv*(f‘l(B))) C f7(B) or sdy+(f71(B)) C f7'(B) implies B sy

semi-closed in X. Thus f is ’y-semi-continuous. O

Theorem 41. [S] Let f : X — Y be a function and x € X. Then f is y-semi-continuous
if and only if for each ~y-open set B containing f{x), there exists A € SO~+(X) such that
z € Aand f(A) C B, where ~y is a regular operation.

We use Theorem 41 and prove the following:

Theorem 42. Let f : X — Y be an injective function. If f is ~y-semi-continuous then
f(sdy+(A)) C (f(A))2 for every A C X, where v is a regular operation.
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Proof. Suppose that f is y-semi-continuous. Let A C X, a € sd.,-(X) and V be a y-open-
nbd of f(a). Since f is y-semi-continuous then by Theorem 41, there exists a y-semi-
open-nbd U of a such that f(U) C V. But a € sd.,«(A), therefore there exists an element
a1 € UNAsuchthata # ay; then f(a;) € f(A) and since fis an injection f(a) # f(ay).
Thus every y-open-nbd V of f(a) contains an element f(a,) of f(A) different from f(a).
Consequently f(a) € (f(A))%. We have therefore, f(sd,~(A)) C (f(A))2. O

The following theorem follows from Theorem 40:

Theorem 43. Let f : X — Y be a function. If for every A C X, f(sd,-(A)) C (f(A))2,
then f is ~-semi-continuous, where ~y is an open operation.

Theorem 44. A function f : X — Y is y-semi-continuous if and only if f~!(int.(B)) C
sinty-(f~H(B)))), for each B CY, where v is a regular operation.

Proof. Forany B C Y, int,(B) =Y — cl,(Y — B) [14]. This implies f ~*(int,(B)) =
7YY —cdy(Y = B)) = X — f (Y — B)). Since f is v-semi-continuous, by
Theorem 39 we have scl.«(f (Y — B)) € f *(cl,(Y — B)). Hence f(int,(B)) C
X — scl«(f~Y (Y = B)). Thus f~1(int,(B)) C X — scl,-(X — f'(B)). Hence
f1(inty(B)) € X — scly- (X — f71(B)) = sint-(f1(B)))).

Conversely, let B be an arbitrary v-open set in Y. Then int,(B) = B. By hypothesis
F~YB) = f Yinty(B)) C sint,-(f~1(B)) implies f~1(B) C sint,~(f }(B)). But
sint-(f~H(B)) C fY(B). Therefore, f~*(B) = sint~(f~1(B)). Thus f~1(B) is
~*-semi-open. Consequently, f is y-semi-continuous. O
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