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Abstract. For integers p, ¢, s withp > ¢ > 2and s > 0, let K5 °(p, q)
denote the set of 2—connected bipartite graphs which can be obtained
from K, 4 by deleting a set of s edges. In this paper, we prove that for
any graph G € K;°(p,q) withp > ¢ > 3,if11 < s < ¢g— 1 and
A(G') = s — 4, where G’ = K, ; — G, then G is chromatically unique.
This result extends both a theorem by Dong et al. [2] and the result in [4].

AMS (MOS) Suabject Classification Codes: 05C15
Key Words: Chromatic Polynomial, Chromatically Unique, Chromatically Equivalent.

1. INTRODUCTION

All graphs considered here are simple graphs. For a graph G, let V(G), E(G), 6(G),
A(G) and P(G, X) be the vertex set, edge set, minimum degree, maximum degree and the
chromatic polynomial of G, respectively.
Two graphs G and H are said to be chromatically equivalent (or simply x—equivalent),
symbolically G ~ H, if P(G,\} = P(H,)). The equivalence class determined by G
under ~ is denoted by [G]. A graph G is chromatically unique (or simply x—unique) if
H = G whenever H ~ G, i.e, [G] = {G} up to isomorphism. For a set G of graphs, if
[G] C G forevery G € G, then G is said to be x—closed. For two sets G; and G2 of graphs,
if P(G1,A) # P(Ga, ) forevery G; € G; and G2 € Go, then G; and G, are said to be
chromatically disjoint, or simply x —disjoint.
For integers p, g, s with p > ¢ > 2and s > 0, let X™%(p, q) (resp. K5 °(p, ¢)) denote the
set of connected (resp. 2—connected) bipartite graphs which can be obtained from K, ;, by
deleting a set of s edges.
For a bipartite graph G = (A, B; E) with bipartition A and B and edge set E, let G’ =
(A’, B'; E') be the bipartite graph induced by the edge set E' = {zy | 2y ¢ E, z €
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A,y € B}, where A’ C Aand B’ C B. We write G’ = K, ;, — G, where p = |A| and
g = |B|. Let A(G’) denote the maximum degree of G'.

Dong et al. [1] have shown that any G € K5 °(p, ¢) with p > g > 3, is chromatically
unique if one of the following conditions holds. '

D: 5<s<g—1landif A(G')=s5—-1,0r
(i) 7<s<qg—-landif A(G') =s—2.

In [5], we proved that for any G € K5 °(p,q) with p > ¢ > 3, is chromatically unique if
9 < s < g—1andif A(G’) = s—3. Inthis paper, we give a similar result by examining the
chromatic uniqueness of any G € K5 °(p, q), where 11 < s < g—landif A(G') = s — 4.
Our result is similar to that of Dong et al. in [1].

2. PRELIMINARY RESULTS AND NOTATIONS

For a graph G and a positive integer k, a partition {A;, Az, --- , Ax} of V(G) is called
a k-independent partition in G if each A4; is a non-empty independent set of G. Let a(G, k)
denote the number of k-independent partitions in G. For any graph G of order n, we have
(see [3]):

P(G,\) = Xn:a(G, AN —1)--- (A =k +1).

k=1
Thus, we have
Lemma 1. [f G ~ H, then o(G, k) = a(H, k) fork =1,2,....

Partition K~ %(p, ¢) into the following subsets:

Di(p,q,s) = { GeK°(p,q ' AG) =1 }, i=1,2,...,s
The following result was obtained in [1].

Theorem 2. Letp>g>3andl <s<q-—1
(@): Di(p, g, s) is x—closed.
(i) Uz<i<(s+3)/2Di (p, q,s) is x—closed for s > 2.
(iid): Di(p, q, s) is x—closed for each i with [(s + 3)/2] < i < min{s,q — 2}.
(iv): Dg_1(p,q,8) NK3°(p,q) is x~—closed for s = q — 1.

For any bipartite graph G = (A, B; F) with bipartition A and B and edge set F, we have
d(G,3) = a(G,3) — (24171 L 2lBI=1 _ 9y 2. 1)
For a bipartite graph G = (A4, B; E), let Z(G) be the set of independent sets in G and let
QGC)={QeI(G)|QNA#BQNB#0}.
The following result is then obtained.
Lemma 3. (Dong et al. [2]) For G € K~*(p, q),
o(G,3) = |UG)| > 22 45 -1 - AG").

For a bipartite graph G = (A, B; E)), the number of 4—independent partitions { A, Az, A3
,Ag }inGwith A; C Aor A; C Bforalli=1,2,3,4is
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(2=t —1)(2!Bl-t —1) 4+ %(3**“ -3-24 1+ 3) + %(3"9I —-3.2/81 1 3)
= (2MI-1 —2)(2!1BI-1 _2) 4+ %(3'*“I +31Bly — 2.
Define
o (G,4) = (G, 4) — { (2M41-1 _9)(2!81-1 —2) 4 %(3“" +318ly —2 } .

Observe that for G, H € K™*(p, q),
a(G,4) = a(H,4) ifandonlyif o(G,4)=cd'(H,4).
The following lemmas will be used to prove our main result.
Lemma 4. (Dong et al. [3]) For G = (A, B; E) € K~*(p,q) with |A| = pand |B| = ¢,

o/(G,4) = Z (2P~1-1QNAI | 99-1-1QNBI _ 9)
QeN(G)

+|{{Q15Q2}|Q1,Q2€Q(G), Q10Q2=0} |

Lemma 5. (Dong et al. [3]) For a bipartite graph G = (A, B; E), if uvw is a path in G’
with de(u) = 1 and dg/(v) = 2, then forany k > 2,

a(G, k) = oG + uv, k) + a(G — {u, v}, k — 1) + a(G — {u,v,w}, k —1).
By using Lemma Swe obtain the following lemma.

Lemma 6. (Roslan and Peng [S]) For a bipartite graph G = (A, B; E), if uvw, uvy and
wvy are three paths in G’ with dg'(u) = 1 and dg (v) = 3, then for any k > 2,
a(Gk) = o(G+w,k)+ (G- {u,v},k—1)+ (G — {u,v,w},k—1)+
oG — {u,v,yh,k — 1) + a(G — {u,v,w,y}, k —1).

By extending Lemmas 5 and 6, we obtain the following result.

Lemma 7. For a bipartite graph G = (A, B; E), if vvw, wvy, uvt, wvy, wut and yvt are
six paths in G’ with dg/(u) = 1 and dg/(v) = 4, then for any k > 2,
a(G,k) = afG+uv,k)+ a(G —{u,v},k—1)+ (G — {u,v,t},k— 1)+
a(G —{u,v,y},k— 1)+ a(G — {u,v,y,t},k— 1) +
a(G - {u,v,w}, k- 1)+ (G — {u,v,w,t}, k- 1)+
a(G —{u,v,w,y},k —1) + (G —~ {u,v,w,y,t}, k- 1).

Proof. Since P(G, ) = P(G + uv, A) + P(G - uv, A), we have
a(G, k) = a(G + uv, k) + (G - uv, k).

Let z be the vertex in G - uv produced by identifying u and v, and z the vertex in G- uv - zw
produced by identifying x and w, and s the vertex in G -uv-zw- zy produced by identifying
z and y. Notice that z is adjacent to all vertices in V(G - wv - zw) — {z,w,y,t}, z is
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adjacent to all vertices in V(G - uv - zw) — {z,y,t} and s is adjacent to all vertices in
V(G- -uwv - zw- zy) — {s,t}. Thus
' G wtzwtzy+at = K+ (G-{yv}),
K1 + (G — {u,v,t}),
K+ (G = {u,v,9}),
K1 +(G —{u,v,y,t}),
K+ (G — {u,v,w}),
(
(
(
)

(G-uwv+zw+zy) zy
(G-uwv+zw)- zy+at
(G-uwv+zw) zy-zt
(G-uwv-zw+ zy+ 2t

(
(

K+ (G — {u,v,w,t}),
G w-zw-zy)+st = K+ (G-{u,v,w,y}) and
G-w -zw-zy-st = K+ (G—{u,v,w,y,t}).

We also observe that for any graph H, a(K1+ H, k) = a(H, k—1), since P(K;+H,\) =
AP(H, A —1). Hence

G -w-zw+ zy) - 2t

a(G-uk) = oG- -w+zw k) +a(G-uv-zw,k)

= o(G:uw+zw+ zy + xt, k) + o((G - wv + 2w + zy) - o, k) +
o((G-uv + zw) - zy + ot k) + (G - uwv + 2w) - zy - xt, k) +
(G- w-zw+ 2y + 2t k) + a((G - wv - zw+ 2y) - 2t, k) +
a((G-uv-zw- zy) + st, k) + a(G - wv - zw - 2y - st, k)

= oK1+ (G- {u,v}),k) + (K1 + (G ~ {u,v,t}), k) +
oKy + (G = {u,v,y}), k) + a(Ky + (G — {u,v,y,t}, k) +
a(K1 + (G — {u,v,w}), k) + oKy + (G — {u,v,w,t}, k) +
(K1 + (G = {u,v,w,y}, k) + (K1 + (G — {u, v, w,y,t},k)

= a(G— {u,v},k—1)+a(G— {u,v,t} ,k— 1)+ '
(G - {u,v,y},k~ 1)+ a(G — {u,v,y,t}, k— 1)+
a(G — {u,v,w}, k- 1)+ (G — {u,v,w,t},k— 1)+
(G — {u,v,w,y}, k — 1) + oG ~ {u,v,w,y,t}, k — 1).

The lemma is then obtained. O

3. MAIN RESULTS

In 2], Dong et al. proved that every 2—connected graph in D, (p, g, s) is x—unique. Then,
Dong et al. in {1] also proved that G is x—unique for every G € D,_;(p, g, ), where
s > 5, and that G is x—unique for every G € D,_s(p,q,s), where s > 7. In [5], we
have shown that each graph G in Ds;_3(p, q, s), where s > 9, then G is y—unique. In
this section, we shall prove that for each graph G in D,_4(p, g, s), where s > 11, G is
x—unique. We first have the following lemma.

Lemma 8. For any G in D,_4(p, q, s), where s > 9, G’ is one of the graphs in Figure 1
{8].

We now present our main result in the following theorem.

Theorem 9. Forany G € K;°(p,q), withp > q> s+1> 12, if A(G') = s — 4, then G
is x—unique. .
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Proof. Since s > 11, (s+3)/2 > s—3 and thus by Theorem 2 ,D,_4(p, g, s) is x—closed.
By Lemma 8, if G in D,_4(p, ¢, s), then G’ is one of the graphs in Figure 1 [8]. Thus

D,_4(p, g, s) contain 166 graphs, which are named as V1, V3, ..

., Vige (see table in [7]).

We then group these graphs according to their o’ (V;, 3) which can be calculated by using

Lemma 4.

T1
T2
T3
Ta
Ts
Te
Tz
Ts
To
Tio
T
Ti2
Tis
Tia
Tis
Tie
Tir

{W,V2}

{Vs,Va}

{Vs5, Vs }

{ Ve, W&, Vo, Vig }

{ V11, V12, Vi3, Vis }

{ V15, Vig, V17, Vis, Vig, V2o }

{ Va1, Vao, Va3, Vau, Vas, Vas, Var, Vasg }
{ Vag, Va0, Va1, Vaz, Va3, Vay, Vas, Vae }
{ Va7, Vag,...,Vss }

{ Vss, Va6, V7, Vss }

{ Vse,Ve0, ..., Vrs }

{ V7o, Veo, .-, Vioa }

{ V1os, Vaos, .- -, Vio2 }

{ V123, Vize, ..., Viaa }

{ V143, V14g,..., Viss }

{ Visg, Vieo, V161, Vie2, V163, Vies }

{ Vies, Vies }

Observe that for any 4, j with 1 < 4 < j < 17, &/(V;;,3) > &/(V,,3)if Vi, € To
and V;, € T;. Thus by Lemma 8 and Equation (2. 1), 7;and 7; (1 < i < j < 17)
are x—disjoint and since D;_4(p, g, s) is x—closed, each T; (1 < ¢ < 17) is y—closed.
Hence, for each 4, to show that all graphs in 7; are x—unique, it suffices to show that
for any two graphs, V;,, Vi, € T, if V;; ¥ V,, then either o/(V;,,4) # &'(Vi,,4)
or a(V;,,5) # a(V;,,5). The values of o/(V;, 4) by using Lemma 4.We shall establish
several inequalities of the form o/(V;, 4) < o/(V},4) for some i, j. Since the method used
to obtain these inequalities is standard, long and rather repetitive, we shall not discuss all
here. In the following, we shall only show the examples of detailed comparisons. In the
first example, we compare o (V1, 4) and o’ (V3,4) when p > ¢, and in the second example,
we compute o Vag, 5) —a(Vag, 5) when p = ¢. The reader may refer to [6, 7] for all graphs
and other detailed comparisons.
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(1) Vy and V5 when p > ¢

o (V1,4) — o/ (V2,4)

s—4
= [ (Z (s ; 4) (2Pt 42072 2)) +15-2P71 4294 15.2973

i=1
s—4 s—4 )
+11-297% 4+ 15.2°75 — 75] - [ (Z ( ; )(2‘1—1—1 +2P72 - 2))
=1

15-2971 4+ 2P 4+ 15.2P73 411 . 2776 4 15. 2°7° — 75]

s—4

i=1

(2P~2 — 2972) _ 15(2P~3 — 2973) — 11(2P~% — 297F)
-4
<-15 (s 5 )(21”—6 —2976) 4 15. 25(2P6 — 29°6)
—26(2p~5 —2975) _ 15.23(2P~5 — 297%) — 11(2P ¢ - 2976)

= (P76 — 2976) [—15(3 ; 4) +15-32-64—15.8 — 11]

< (207° - 297%) [-15- 21 + 285] [since (s ; 4) > (;) =21 ]
= (2P7° - 277°)(~-30) < 0.
(2) V51 and Vo3 when p = ¢

When p = q, a’(Va1,4) = o’(Va3,4). Thus we need to calculate a(V21, 5) — a(Vas, 5).
Using Lemma 7,we have

a(V21,5) — Va3, 5)

a(Var + a1by,5) + a(Var — {a1, 01 },4) + a(Var — {a1,b1,e1},4) +

a(‘/21 - {a11b17d1}74) + a(‘/21 - {al,bladlael}74) +
a(Var — {a1,b1,¢c1},4) + (Va1 — {a1,b1,¢1,€1},4) +

a(Var — {a1,b,¢1,d1},4) + a(Voy — {alablycladl,el},‘l)jl -

a(Vas + agbs, 5) + a(Vas — {ag, b2}, 4) + a(Vas — {a2,b2,e2},4) +

a(Vas — {a2,b2,d2},4) + a(Vag — {az,b2,d2,e2},4) +
a(‘/23 - {a2,b2,02},4) + a(‘/23 - {02,b2,02,e2},4) +

a(Vag — {a2, ba, c2,da}, 4) + a(Vas — {az, b2, c2,d2, €2}, 4) }
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a(Vor — {a1,b1,e1},4) — a(Vag — {az,b2,e2},4) ) +
a(Vor — {a1,b1,d1},4) — a(Vaz — {az, b2, d2}, 4) ) +
a(Voy — {a1,b1,d1,e1},4) — a(Vas — {az, b2,d2, €2}, 4) ) +
Vo1 — {ai1,b1,¢1},4) — a(Vag — {az, b2, c2},4) ) +

(
(
(‘/21 - {alablacl,el}a4) - a(‘/23 - {(127b2,02,€2}, 4) ) + .
(Va1 — {a1,b1,¢1,d1},4) — a(Vas — {az, b2, c2,d2},4) ) +

(

[e4
[e4
[e4
[e4

(
(
(
(
(
(
(

‘/21 s {alablaclr dl:el}a4) - a(vv23 - {a2,b2a 027d2762}’4) )

since Va1 + aiby = Vog + agby, Vo1 — {a1, b1} = Vas — {a2, b}

o (Vay — {a1,b1,d1},4) — &' (Vaz — {az,b2,d2},4) ) +
o' (Vor — {a1,by,d1,e1},4) — o' (Vag — {az, b2, d2, e2},4) > +

o' (Vor — {a1,b1,¢1},4) — @' (Vas — {a2, b2,¢2},4) ) +

o (Vo1 — {a1,b1,c1,d1 },4) — &' (Vaz — {az, b2, ¢2,d2},4) ) +

o' (Va1 — {a1,by,c¢1,d1,e1},4) — o/ (Vaz — {az, b2, c2,d2, €2},4) )

= f (3 B 4) (P30 42978 —2) — f (s S 4) (2P 27 297 - 2) )

i=1

(OAI(Vgl - {al,bl,cl,el},él) — OAI(V23 - {ag,bg,CQ,eg},4) ) +
+

<s—4 (3 B 4) (P37 42973 _9) — S (3 i 4) G- 2)>
i=1

i=1




8 R. Hasni and Y. H. Peng

s—4 s—4
s—4 s—4
s—4 ©8—4
+<;<S 4)(2?‘*’+2q—3—2)—;(524)(2p2’+2q5 2))
+( S(s 4)(217 ~4—i | 943 2)_§<S;4>(2p—2—i+2¢I—5 2))
=1 =1
(B (oo (o)

- 37{ (s 1 3) (2776 — 2776) 4 (s 5 4) (276 — 2777) +

_ —4
(s 3 4) (206 —27=8) 4 ... ¢ (s 4) (2070 —2P7°71) & since p=g¢
s

>0 since s> 11.

Similarly, we can show that for any two graphs V;,, V;, € T;, if V;;, % V,,, then either
o' (V;,,4) # o (Vi,,4) or a(V;,, 5) # a(V;,, 5) (see [6]). Hence the proof of the theorem
is complete. O

As conclusion of this paper, we give the following conjecture which is true for t = 3,4, 5
and 6.

Conjecture. For any G € K;°(p,q), withp > ¢ > s+ 1 > 2t (t = 3,4,5,---), if
A(G') = s — t + 2, then G is xy—unique.

Acknowledgement. The authors would like to thank the referees for their constructive
and helpful comments.
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Abstract. The well known contraction mapping principle or Banach’s
fixed point theorem asserts: The method for successive substitutions con-
verges only linearly to a fixed point of an operator equation in a Banach
space setting [5], [7]. In practice, if Newton’s method is used one ig-
nores the additional information about the contraction mapping informa-
tion. Werner in [9] provided a local analysis for a Newton-like method of
at least @-order 3 which uses this information. Here we provide a finer
local convergence analysis for the same method Under weaker hypotheses
which do not necessarily imply the contraction property of the mapping.
A numerical example is provided to show that our results compare favor-
ably with the ones in [9]. The semilocal convergence of the method not
considered in [9] is also examined.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique fixed
point z* of a Fréchet-differentiable operator F' which is defined on a convex subset D of a
Banach space X with values in X.

The contraction mapping principle or Banach’s fixed point theorem [5], [7] asserts that
if

|F'(z)]| < 1forall z € X (1.1)

then there exists a unique fixed * of operator F' on X. The method of succesive substitu-
tions or Picard’s iteration

Yn1=F(yn) (o€ X) (n>0) (1.2)

converges only linearly to z* (the definition of @@ order for an iterative meéthod is well

known and can be found in [8, Definition 9.1.5, p. 284]). In order to increase the speed

of convergence to  order at least two, and also use the contraction mapping property of
9
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operator F' Werner in [9] introduced the Newton-like method
Tnt1 = Tn — M7 (2 — F(z,)) (zo €D), (x>0),y€[0,1]  (13)
where, M, € L(X) (n > 0) the space of bounded linear operators on X, is given by
M, =1-F'(yzp+ (1 - 7)F(z,)) (n2>0). (1.4)

If v = 1, we obtain Newton’s method [4], [5]-[9], whereas if v = 0 we obtain Stir-
ling’s method [1]-{3], [S]. Other choices are also possible [9]. Note that method (1.3) (as
Newton’s method does) requires one function evaluation and one evaluation of the Fréchet
derivative F' of F per step independent of ~.

The motivation for introducing method (1.3) is due to the fact that if (1.1) holds, then
F(z,) is a better approximation to z* than z,,. Then, we can write:

z, — F(z,) =z — F(z*) + /l[I — F'(z* + t(z,, — z*))]dt(zn ~ *) (1.5)
0

or
-1

=z, — {/1[1 ~ F'(z* + t(zp — z*))]dt} (0 — F(z,)). (1.6
0

1
Werner noted that the choice v = - is the most appropriate choice of the free parameter

« in (1.3) leading to the midpoint rule. Werner provided a local convergence analysis for
method (1.3) (see Proposition 1 in {9]) under hypothesis (1.1) when D = X.

Here we refine Werner'’s result by providing a local convergence analysis under weaker
hypotheses with the following advantages: finer error estimates on ||z, — z*|| (n > 0),
and a larger radius of convergence allowing for a wider choice of initial guesses zg. We
then provide a numerical example where our results compare favorably with the ones by
Werner in [9]. Finally the semilocal convergence of method (1.3) not considered in {9] is
studied. '

2. LOCAL CONVERGENCE ANALYSIS OF NEWTON-LIKE METHOD (1.3)
We can show the main local convergence theorem for Newton-like method (1.3):

Theorem 1. Let z* be a fixed point of operator F such that ||F'(z*)|| < 1. Assume there
exist parameters ag € [0, 1] and Lo > 0 such that

|1F(z) - F(z*)|| € ao |z — z*||, @1

|l = F'(z*)]HF'(F(z) + 6(z — F(z))) - F'(z)|| < (2.2)
S Lo||F(z + 6(z ~ F(z)) — 7|
forallz € D, 6 €[0,1] and

Ulet,r)y={ze X :||z—2"||<r} C D, (2.3)

where,

1

r= -, 2.4)
c
c=a+b,
1
a = Lo[5 +ao(l =) + 3],

and
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Then sequence {xn} generated by Newton-like method (1.3) is well-defined, remains in
U(z*,r) and converges to x* provided that zo € U(z*,). Moreover the following error
bounds hold for all n > 0:

alz, — 2|

—z¥|| < . .

Furthermore if ag € [0,1), x* is the unique fixed point of F in U(z*,r).
Proof. Let x € U(z*,r). Then by (2.1) we have .
IF(z) —z*[| = |F(z) - Fz")| Saollz - 2" < lz - 2| <7,
which implies that F'(z) € U(z*, r).Note also that F(z) +~y(z — F(z)) € U(z*,r), since

|1F(z) + vz - F(z)) -2 < (1 =) [|F(z) - F(*)[| + 7 llz— 27|
<@ =mao+1]llz - ="}
<llz—z*| <

By hypothesis o € U(z*,r). Let us assume z, € U(z*,r) forall k = 0, 1,...,n. In view
of (2.1)-(2.4) we obtain in turn

[ - F'(F(z*) +v(z* = F(a"))]| ™! - [[ - F'(F(z*) +4(z* = F(z"))  (2.6)
~(I = F'(F(zx) + v(zx — Fzi)]l| <
< Lo || - F'(2*)]) 7 [F (k) + v(2k — Flax)) — F(z*) — 7(e 1||

< Lo || = F'(@)] 7 — 7)(F(ax) — F(z*)) +v(zx — 2¥)
< Lo[(1 —y)ao +9] |lzx —2*|| < br < 1.

It follows from (2.6) and the Banach Lemma on invertible operators [7] that [I—F'(F(zx)+
Yz — F(zy))] ! exists, and '

i = F'(F(ze) + v(zk = Fz))) 7' - F'(=")]| @7
<[ -bllor -]t < [1-br] 7

We need the following estimates:
H[I - F'(a:")]_l/0 [F'(z* + t(z — %)) — F'(z* +v(zx — x*))]dt” (2.8)
< |- e [P + o - o) - Pl
0
+ |17 - Fl(z*) 7 F' (z*) - F'(z* 4+ y(zx — :L'*))]”

1
< Lo { [ e +tlon = %) = 2%t + o — 0% —y(an - x*)||}
0

1 .
< Lo (3 +7) b ="l
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and
IT = F'@) 7 P (@ +y(as — ) ~ F/(Fae) + 1@k - Fo)l]  @9)
< || = F'(@")] 7 F' (2" +y(zx — %)) — F'(a")]]|
+ || = F'(@")] 7 F (z*) ~ F'(F(zx) + v(zk — F@))]||
< Lo{llz™ —2* — v(zx — =) || +
| F(zk) + y(zk — F(zr)) — F(z¥) —~(z" — F(z"))||}
< Loly+ ao(1 = 7) +] llow - =°|l.

Let us define, Ax(t) = F'(z* + t(zx, — z*)) and Bi(t) = F'(F(zx) + t(zx — F(zk))),
t € [0,1]. In view of (1.3) we get

Tp1 — & = [[ = By(y)] [ = F'(z*)|[I - F'(z")] ! (2.10)
AF(zk) — F(z*) — Be(7)(zr — %)}
Using (2.1), (2.2), (2.8) and (2.9) we get
[[I = F'(z*)] 7} [F(zx) — F(z*) = Bi(7)(zx — z")]]| @.11)

= ”[] — F'(z*)]? /Ol(Ak(t) — Br(v)) @k — I*)dt“b

< “u - P [ (At) — Ao - x*)dtH
I = P/ (4e() - Be(n)(a - =)

< alzy, —z*|?.
By (2.8), (2.10) and (2.11) we obtain (2.5). It follows by (2.5) and the definition of r that
leker — 2™ < llze — 2™ <7,
which shows that 211 € U(z*,r) and klggo zy = z*.To show uniqueness, let y* be a
fixed point of F in U(z*, ) with £* # y*. Using (2.1) we get
l* — y*|| = |F(z*) = F(y")l < aollz” — 9"l < ll=* —y*|l,
which contradicts * # y*.That completes the proof of the theorem. O
Remark 2. The conclusions of the theorem hold under the stronger conditions
|l = F'(z")]7 ' [F'(z* + t(z — %)) ~ F'(z* + v(z — z¥))]| (2.12)
<Lyt —Allle -2
and
I - F @) F(@ +4( o) - F(F@) +1@ - F@)]|  @13)
< Lo(1=9) [l — =
for all z € D (together with (2.2) and (2.3)). It follows from the proof of Theorem 1 that
the conclusions hold provided that a is replaced by @ given by
a=Li(y" -7+ %)+L2a0(1 =) (2.14)
Werner in [9] used the stronger conditions (1.1) and
I = F'(@") " (F'() - F'(y)|| < Lllz -yl 2.15)
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forall z,y € D . To arrive at (2.5) with a, b being replaced by @, b given by

L 1
——[>+a—(1+a)y++% and0, (2.16)

a = 2

l-a
respectively.
Clearly
L() < L, ag < « (217)

L

hold in general, and L_’ag can be arbitrarily large [4], [5]. Hence the error bounds are
0 Qo

finer, and the radius of convergence larger under our (weaker) conditions. Note also that

condition (2.2) can be replaced by

|7 = F'(@*)] 7" [F'(2) = F'(a")]|| < Lo llo — =°| 2.18)
forallz € D.
Note also that ) ,
Ly<L (2.19)

L
holds in general and T can be arbitrarily large {4], {5].
0
Let us provide a numerical example, where our results compare favorably with the ones
given by Werner in [9].

Example 1. Let X = C|0, 1], the space of " continuous functions defined on interval [0, 1],
equipped with the max-norm and let D = U (0, 1).
Define function F on D by

F(z)(s) = Az(s) + Bs /O 1 0z>(9) do (2.20)

for some given real constants A # 1 and B. Then the Fréchet—derivative F' of function F
is given by '

1
F'(z(w))s=AIw(s)+3Bs / 6z%(0) w(h)dd for all w € D. (2.21)
0
We have £* = z*(s) = 0 is a fixed point of function F'. Using (2.20) and (2.21), we can
set

1 3
Qg = |A|+§]B|’ a= |A1+§lB|,

L0=g|B(l——A)“l| and L=3|B(1-A)7Y.
Letd=~v=1
Case 1: A=B=%. We get

a0=§<1, Lo = 622, L=3 and a=g>1.
Hence, contraction hypothesis (1.1) used by Werner in [9] is violated. That is,
there is no guarantee that sequence {x,} converges to z*(s) = 0.
However, by Theorem 1, we have

21 3 4
a=-r b_i’ r=g7 and

sequence {x,} converges to z*(s) provided that Ty = zo(s) € U(0,r).
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Case2: A= % and B = i This time, we have

5 .3 3 7
=, LO_LO_Z’ L_Ea a=g,
21 3 =
a—g, b—Z, a==6
and
rTw=-<Tr -8
W=e AT T

That is our radius of convergence is larger which allows a wider choice of
initial guesses xy. Moreover, our error bounds (2.5) are tighter, since a < a.

3. SEMILOCAL CONVERGENCE ANALYSIS OF NEWTON-LIKE METHOD (1.3)
We can show the following semilocal convergence result for Newton-like method (1.3):

Theorem 3. Let F' be a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in X. Assume: there exist positive parameters pg, p, lo and
I such that for some zo € D, € [0,1] My* € L(X) and for all z,y € D:

1 F(z) — F(zo)ll < pollz — zoll 3.1
| My F'(2)|| < p, (3.2)
M5 [F'(2) = F'(w)]|| < loliz — wl| 3.3)
Jor z=z(v,z) = vz + (1 - )F(z),w = w(7y) = vZo + (1 — 7)F(zo),
| Mg [F'(2) — F'(u)]|| < Ullz— vl (3.4)

forv = v(t) =z + t(y — x) for all te [0,1]; for ro, 71,72, and 5 given by
_leo-F@ol | _1-Go+p)+vDi

1-p '’ 2q0 ’

_1-U1=%) lzo ~ Fa)ll + VD3

2[go +U(poL =) +72 =7+ )]’

D1 =[1-(po + p)] = 40 llzo — F(zo)ll,

= o= [1- VaTleo = FGaol

where, go = lo[y + (1 — ¥)po),

1
=l -v+3),¢2=l1-7), a=q +qp

2

the following hold:

ro < min{ry,r3}, 3.5
1 _ 1 — (po + p))?
70 - FG@ol < 2. M50 - Pl < Z2 B g <ot p<1 o)
or
ro < min{rs, r3}, 3.7
1 - . 1

lzo — F(zo)| < . |M57 [mo — F(zo)]|| < mln{m, T4} (3.8)

where, T4 is the smallest root of equafion
car? + err + ¢ =0, (3.9)

T
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1
ca = 02(1 = v)2, c1 = —2[1 — v+ 2(go + £(po(1 — N+ -+ =M,

2
cop=1,
> 4deocy; (3.10)
and
U(xo,7) C D @3.11)
for some {r € [ro,min{rq,r3}) if (3.5) and (3.6) hold or r € [ro,min{ry,r3}) if (3.7)-
(3.10) hold.

Then sequence {x,} generated by Newton-like method (1.3) is well defined, remains
in U(zxo,r) for all n > 0 and converges to a fixed point x* € U(xo,r) of operator F.
Moreover the following estimates hold:

[91 1Zn+1 = Zall + @2 [|Tns1 — F(@n)|l] [ Zns1 — Znll

x — F(zx < (3.12
[ns1 = Flena)l 1 - go ||Zn+1 — zol| )
<enllzn — F(za)|*, (n20)
and
[Zn+1 = Znll < Bn 201 — Fza—i)l* (n > 1), (3.13)
where,
q
£, = n Z 0 5
S P P | ey Fy | R
and .
— n—1
Ep = ————— (n 2> 1).
ey e
Furthermore if
r € [ro,T4), (3.14)
where,
1 -1
4= {qo+€ [72 —r+5+0 —7)1’0]} :
then the fixed point x* is unique in U(xo, ). Finally the following estimate holds:
v L=+ 3+ —)p .
e — 2] < ] R ) LA SR O

1 - go ||zn — zol|

Proof. We shall first show that for all y € [0,1], z € U(zo,7) and vz + (1 — 7)F(z) €
U(zo, ).
We can have
vz + (1 = 7)F(z) — 20 = ¥(2 ~ T0) + (1 —7)(F(2) — F(20)) (3.16)
+ (1 = 7)(F(zo) — o). '
In view of (3.1), (3.16) and the choice of r > ¢ we get
vz + (1 =) F(z) — zoll < v llz — zoll + (1 — ) | F(z) — F(zo)l (3.17)
+ (1 = 1) |F(zo) — ol
<+ @ =7polr + (1 =) |F(zo) — 2ol <7,
which implies vz + (1 — ) F(z) is in U(zo, 7).
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We shall next show M(z)~! € L(X) for all z € U(z, 7). Using (3.1), (3.3) and the
choice of < r3 we get in turn

|42(0)~* (M(0) — M(z)]| (3.18)
< || Mg F'(vz + (1 - MF(2)) - F'(vao + (1 = ) F(za))]|]

<t vz — yzo + (1 = V)(F(z) — F(z0))| '

< Loy llz — @oll + (1 — 1)po llz — zoll]

=qo ||z — o]l < gor < 1.

It follows from (3.18), and the Banach Lemma on invertible operators that M (z)~! €
L(X) with
1

— qo [l — ol
Let us assume zy, € Ul(zxo,7) fork = 0,1,...,n. We shall show (3.12), (3.13) and 2441 €
U(zop, ) hold true.

Using (1.3) we get the identity

Try1 — Farq1) = (3.20)
= 2p11 — F(Tnt1) - Mi(Zhs1 — zk) — (2K — F(zk))
= F(zx) — F(@r1) + F'(vzx + (1= 1) F(2)) (k1 — )

1

o= /0 [Fl(xk+1 + t(.’L‘k — .’L'k+1)) — FI(’)’.’L'k + (1 — ’)’)F(:L'k))] (.’L')C - :l:k+1)dt

By (1.3), (3.4) and (3.19) (for £ = z,1) and (3.20) we obtain in turn:
|Ze+1 = F(zps1)]] (3.21)
efo | kr1 + t(@p ~ Tv1) ~ y2x = (1 = YF(2p)| [l2e+1 — zx]| dt
1—gollzher — zoll
1
LI 1= A e = el + (1 =) oen = F@o] fzess — il
1 - qo||zk+1 — mol|
[ql lte+1 — zell + @ 1Ter1 — Flze)ll] o — xk”

1~ go [|lTk+1 — ol|
We need an upper bound on the ||zx+1 — F(z)|| - In view of (1.3) we obtain the identity

ZTp+1 — F(zk) (3.22)
= zy, ~ F(zx) — My 2k — F(ax))
= M {[I - F'(yax + (1 = ) F(zx)))(x — Fx)) = (@x — F(ax))}
= [M Mo)[Mg ' F' (vak + (1 — 7)F(zx)(zx ~ F(ax))-
Using (3.2), (3.19) (for ¢ = x;) and (3.21) we obtain

| M ()~ M(0)]| <7 (3.19)

leier — Flan)| < 20 FEl (323
—qollzx — xo"
In view of (1.3) we get
ks -zl < 2= F @l (3:24)

1— g ||lzx — ol
By combining (3.23) and (3.24) in (3.21) we obtain (3.12) and (3.13).
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We must show ||z, — F'(z.)|| = 0as n — co, which will then imply that ||z, — z,|| —
0 and ||z, — 2*|| = 0as n — oo. By (3.12) is suffices to show

En||Tn ~ F(za)| <1 (3.25)
or

q||zo = F(zo)||

—_— <1 3.26

which is true by the choice of 7 < r3 and the choice of ||zg — F'(zp)|| < %. We must also

show zx41 € U(zo, 7). Two estimates for ||zx+1 — Zo|| will be given.
Estimate 1. Using (3.1), (3.2), (3.5), (3.6), and (3.19). By (1.3) we get in turn

Tk+1 — T ( (3.27)
=z — 20 — M 2k — F(%))

= (M7 Mo] M [F (o) ~ F(zo) — F(v(z + (1 — 7) F(a))(zk — 7o)

+ (F(zo) — F(20))]

and
F(xzg) — xof| + +p)r
”-’I:k+1 __.,1:0“ S [“ ( 0) 1 0” (po p) ] S 7', (3.28)
- qoT
by the choice of » < 1 and the choice of
_ 10po + p))?
||M0 1[.’Eo - F(:I:o)]“ < %, 0<po+p <1l

Estimate 2. Using (3.1), (3.4), (3.19) and (3.27). We obtain that the expression inside the
bracket in (3.27) composed by M ! is bounded above (in norm) by

llzx — xol|dt  (3.29)

M5t [P0+ tan = 20))  F(yai+ (L= 7)F (@)
0

+ || Mg (F (o) — o) |

< /01 l|zo + t(zk — 2o) — yTk — (1 — 7)F(2k)|| zx — xol| dt
+ [| Mg (F(z0) — o]

< [llzo = F(zo)ll (1 =) +po(1 =) lzx — @oll + (v* =7 + %)
llex = zoll] - [lzx = zoll + || Mg * (zo — F(z0))||

That is it suffices to show

zk+1 — Zoll (3.30)
< Ellzo—F (o)l (1= +£y* —v+ 3 +po(1=M]r? +|| Mg } (mo—F (=0 )|

- 1—gor

<r

which is true by the choice of 7 < r4 and the choice of

1My (20 — Fi(zo))]| < min { Z(-fl_—ﬂ} .
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Finally to show uniquenéss, let us assume y* € U(zq,7) is a fixed point of F. Using (1.3)
we obtain the identity

Tpy1 — Y (331
=z —y" — M,:l(zk — F(.’L‘k))

= Mg (I = F'(yor + (1 = V) F(ar)))] (zx — y* — (2 — F(2))]

= [M ' Mo] My /0 [F'(y* +t(zx — y*)) — F'(yzx + (1 = v) F(zx) (2 — y*)dt.

Using (3.4), (3.19), (3.31) and the choice of 7 € [rg,74) We obtain in turn

lzk+1 — y* |l (3.32)
1 * * *

_ Lo =l = 1o+ (L= ) (FGon) - ) o = ]

- 1 —gor

P -yt 3+ (=)o) llzk — w7l

- 1 —gor

< lzx = y*{l
which shows (3.15), and lim zj, = y*. However, we showed lim z; = z*. Hence, we

k—o0 k—o0
deduce
ot =y*. (3.33)

That completes the proof of the theorem. O

Remark 4. It follows from theorem 3 that the Q)-order of convergence for Newton-like
method (1.3) is at least quadratic. Conditions (3.3) and (3.4) can be replaced by the usual
stronger Lipschitz conditions where z and v are simply in D. Note also that

po < pand{y < ¢, (3.34)

¢
hold in general, and pg’ 7 can be arbitrarily large [4], [5].
o £o
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique
solution z* of equation
F(z) =0, (.1
where F' is a twice Fréchet—differentiable operator defined on a convex subset D of a
Banach space X’ with values in a Banach space ).
A large number of problems in applied mathematics and also in engineering are solved by
finding the solutions of certain equations. For example, dynamic systems are mathemati-
cally modeled by difference or differential equations and their solutions usually represent
the states of the systems. For the sake of simplicity, assume that a time—invariant sys-
tem is driven by the equation & = T'(z), for some suitable operator T', where z is the
state. Then the equilibrium states are determined by solving equation (1.1). Similar equa-
tions are used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential and integral equations), vectors (systems of linear
19
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or nonlinear algebraic equations), or real or complex numbers (single algebraic equations
with single unknowns). Except in special cases, the most commonly used solution meth-
ods are iterative—when starting from one or several initial approximations a sequence is
constructed that converges to a solution of the equation. Iteration methods are also applied
for solving optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the same recursive
structure, they can be introduced and discussed in a general framework.

We revisit Werner’s method [9], [10]:

Tn +Yn

Tnt1 =Tn — AL F(z,), A, =F/( 7 )

(1.2)
Yn+1 = Tn41 — A;I F(l'n-l—l)a (TZ > 0)7 (xo,yo € D)

The local convergence of Werner’s method (1.2) was given in [9], [10] under Lipschitz
conditions on the first and second Fréchet—derivatives given in non-affine invariant form
(see (2.52) and (2.53)). The order of convergence of Werner’s method (1.2) is 1 + V2.
The derivation of this method and its importance has well been explained in [9], [10] (see
also [3]). The two—step method uses one inverse and two function evaluations. Note that if
g = Yo, then (1.2) becomes Newton’s method [1}-[11].

We provide a semilocal convergence analysis using our new idea of recurrent functions.
Our Lipschitz hypotheses are provided in affine invariant form. As far as we know the
semilocal analysis of Werner’s method has not been studied in this setting. We are mostly
interested in finding weak sufficient convergence conditions, so as to extend the applica-
bility of the method.

Our new approach can also be used on other one—step or two—step iterative methods [1],
(3], (4]-{11].

The semilocal convergence is examined in Section 2 and a numerical example is given in
Section 3.

2. SEMILOCAL CONVERGENCE ANALYSIS OF WERNER’S METHOD

It is convenient for us to define some auxiliary functions appearing in connection to
majorizing sequences for Werner’s method (1.2).
Letéy >0,£> 0,00 > 0,17 > 0,77 > nand B = 1+ « be given constants. It is convenient
for us to define function £, on [0, +00) by

fity=0tP +405t—2. Q.1
We have:
f1(0)=-2<o0. (2.2
There exists sufficiently large u > 0, such that:
fit)y >0, t>u. (2.3)

It follows from (2.2), (2.3) and the intermediate value theorem that there exists v € (0, u),
such that

fi(v) =0. 2.4)
The number v is the unique positive zero in (0, +oc) of function 71, since
Tty =Bt +48>0 (t>0) (2.5)

That is function f is increasing and as such it crosses the positive axis only once.
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Moreover, define function g on {0, +00) by

gt) =20 3+ 2L 2+ L% t— 0 n°. (2.6)
We have as above:
9(0) =—£n* <0 Q.7
and
g)>0  (t>() (2.8)

for sufficiently large ¢ > 0.
Hence, as above there exists §; € (0, (), such that:

9(d4) =0. (2.9
The number 4 is the unique positive zero of function g on (0, +00), since
gt)=6Lt°+46t+L0*>0 (t>0). (2.10)
Set
P lo (n+7) #1 @2.11)
(1] 1 _ ZO (T’ +ﬁ)7 0 T’ T’ ? .
Voo =1—24g 7 (2.12)
and
do

We can show the following result on majorizing sequences for Werner’s method (1.2):

Lemmal. Let{, >0,£>0,a> 0,7 > 0,7 > nand B =1 + « be given constants.
Assume:
bh(n+7) <1, n<w (2.14)
and
81 < Voo, (2.15)

where, v, 81, 04, Voo Were defined by (2.4), (2.13), (2.9) and (2.12), respectively.
Choose:

8 € [61, Voo- (2.16)
Then, sequence {t,} (n > 0), generated by

l (tn+1 - tn)l+ﬂ

to=0, ti=1n, tpyz=tns1+ , 2.17
° L= 2 T2t (tng1 + 5n41)) @17
with,
— 14 (tn+2 - tn+1)l+ﬂ
sg=0, 81=7, Spnya=1tni0+ , 2.18
° Len i T2 A=t (a1 + 5n41)) @19
is non—decreasing, bounded above by:
27
= —— 2.1
2-4 2.19)
and converges to its unique least upper bound t* with
t* € [0,t*]. (2.20)
Moreover the following estimates hold for all n > 0:
tn < Sn, (221)

5 5 n+1
0 < tuss ~tars <5 (tarr —t) < (5) n 2.22)
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and
5 5 n+2
0 <spy2 —thga < 3 (Sn41 —tat1) < (5) 7. (2.23)
Proof. We shall show using induction on m:
£ (tma1 — tm)?
0< tm - tm tm - tm
= mas T tm g(l——fo(,n+14—sm+4))( +1= bm) 2.24)
< Z
= 9 ( m+1 )
. £ (tmr2 — tms1)?
0< 542 —tm = tmiz — tm
S o2 T2 = STy s 2T 00
< 3 (tmi2 — tmy1)
and
Lo (tmy1 + 8my1) < L. (2.26)
Estimates (2. 24) (2.26) for m = 0 will hold if:
l (tl - to) l nﬂ
= — =6y < 6, 2.27
1—bo(ti+s1) 1-bo(m+m )
5 B
£ (tz — )P ¢ (5 77) =
< =8 <8< é 2.28
l—fo(tl-f-sl)_l—fo(f]-f-ﬁ) 0=7 = ( )
and
by (tr+s1)=4 (n+7) <1, (2.29)

respectively, which are true by (2.16) and (2.14). Let us assume (2.21)—(2.26) hold for all
n<m+1.
Then, we get from (2.24) and (2.25):

m+2
-(G)
N g (2.30)

tm+2 <

and

m+2
)
5\ ™2 1- (§> 5\ ™2
Sm+2 S tmtz + (E) n < {——6—“ + <—> } n. (2.31)
2

We shall only show (2.24), since (2.25), will then follows (as (2.28) follows from (2.27)).
Using the induction hypotheses, (2.24) certainly holds if:
b4 (tm+1 - tm)ﬂ + f() ) (tm+1 + Sm+1) -6 S 0

or,

m+1 m+1
ARG 1‘@ 1‘@) 5\
RORIEEL r e (3) feso
1-- 1——
2 2
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or, since 5 > 1

)
o e
é(—) P +4y 8 { — +(—> }77—650. (232
2

2 L 2

We are motivated from (2.32) to define functions f,,, (m > 1) on [0, +00), for v = g and
show instead of (2.32):

fm@) = o™ 1P 426 2040+ +o™) +v™H)p—2<0. (233)
We need a relationship between two consecutive functions f,,:
frma1(®) = €97 9P 4248 2 (A +v4 -+ Loy -2

= Lo pf4eom gl — gl pfy
262 Q4v+---+0™) oML 4t Lm0 (2.34)
= fo@)+€vm P — L™l pf 12 4y (v ™2 g
= fm(v) +g(v) v™ 1 1,
where, function g is given by (2.6).
We have by (2.33):
O =P +44,n-2<0, (2.35)
fm(0)=44n—-2<0 (m>1) (2.36)
and for sufficiently large v > 0:
fm(v) > 0. (2.37)
It follows from (2.35)—«2.37), and the intermediate value theorem that there exists v,, >
0, such that f,,(v,,) = 0. Moreover, each v,, is the unique positive zero of f,,, since
fl(v) > 0forv € [0,+00).
‘We shall show
fm(v) <0 forall vel0,v,] (m2>1). (2.38)

)
If there exists m > 0, such that v, 1 2> 2 then, using (2.6) and (2.34), we get:

Fmt1(Omt1) = fn(Wm1) + g(Ums1) V1 1
or _
Jm(vm+1) <0,

Since fyn41(vm+1) = 0 and g(vms1) V35 1 2 0, which imply vy < v,

‘We can certainly choose the last of the v,,,’s denoted by v, (obtained from (2. 32) by letting
m — oo and given in (2.12)), to be vy, 4.

It then follows sequence {v,,} is non—increasing, bounded below by zero and as such it
converges to its unique maximum lowest bound v* satisfying v* > v.

Then estimate (2.38) certainly holds, if

< VU

N S,

which is true by hypothesis (2.15).

Finally, sequences {t,}, { s} are non—decreasing, bounded above by t**, given by (2.20).
Hence, they converge to their common, and unique least upper bound t* satisfying (2.20).
That also completes the proof of Lemma 1. g
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We can also provide a second majorizing result.
Let us define function h,,, (m > 1) as f,, by:

h(s) = £s™ 14 4ly (14s+---+5™)n—2, 2.39)
_ —¢nB 2 2« 1 16 £ £ n®
" +VE P+ 166 L (2.40)
8 0y

AL b (n+7) #1 2.41)

0—1—50(77-#5)’ .071 n ’ -
51 = max {7", 5.} (2.42)

and

Too = Voo (2.43)

Then, with the above changes and simply following the proof of Lemma 1, we can pro-
vide another result on majorizing sequences for Werner’ s method (1.2), using a different
approach than in Lemma 1:

Lemma2. Let{y > 0,£>0,0>0,17>0,0 <% < nand =1+« be given constants.
Assume:

bhn+n) <1 (2.44)
and
01 £ Veos (2.45)
where 81, Too, 3.,_ are given by (2.42), (2.43) and (2.40), respectively.
Choose
8 € [61, Too)- (2.46)

Then, scalar sequence {vn} {(n > 0), given by

£ (Vpgy — o)A
2 (1—4o (Un41+Fnt1))’

vo=0, vi=1, Upntz=vpy1+ 2.47)

with,

£ (Vntz = Vpg1)'FP
2 (1 -4 (vnt1+3n+1))’
is non—decreasing, bounded above by t** and converges to its unique least upper bound t*
with t* € [0,t**], where t** is given by (2.19).
Moreover, the following estimates hold for all n > 0:

S0 = 0, 8 = ﬁa gn+2 = Unt2 + (248)

Sn < Up, (2.49)
5 5 n+1
0< Un+2 — Un41 < 5 (Un+1 - vn) < (5) n . (250)
and
5 - 5 n+2
0<Un42—Sn42 < 5 (Vn+1 = Bn41) < (§> 7. (2.5

We also need a lemma due to Werner [9, Lemma 1, p. 335]:
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Lemma 3. Let G : D C X — Y be a twice Fréchet differentiable operator.
Assume that there exist a positive constants Ly, Ly o and o € [0,1), such that:

|G'(z) -G WISLL |z—yl (2.52)
and
| G"(x) = G"(y) II< Laa lz—y|* (2.53)

Jorall z,y € D.
Then, the following estimates hold:

| G(z) - Gly) - G'(2) ( —y) IISL1/0 [A-t)y+tz—z]| di [z—-y]l

for all z,y,2 € D
(2.54)
and
for0e 0,1, z,yeD, zg=0z+(1~-6) y:

2 24
6 -ow-0w eni < (i (0-3) ) STy

1
0—§\ux—yw.

L,

(2.55)
We can show the following semilocal convergence result for Werner’s method (1.2):

Theorem 4. Let F' : D C X — Y be a twice Fréchet differentiable operator.
Assume:
There exist points zo,yo € D, Ly > 0, a € [0,1] and Lo o > 0, such that for all z,y € D:

Ayt e Ly, x), (2.56)
PR , o + +
| 45" [F(@) - F( )] IS Lo o - 252, @5
I 45" (F"(z) = F"W)] IS Loy 2=y %, (2.58)
Yo €U(zo,t")={x €X, | z—m0 |<t*} C D, (2.59)
| Ag" F(zo) II< m, (2.60)
| A5 F(zy) <7, 2.61)
where,
2 = o — ﬁ"(‘”"—;—@)~1 F(zo) 2.62)
and

Conditions of Lemma 1 hold, with
@ { = L2,a

2’ S 2B8(1+8)
Then sequence {x} defined by Werner’s method (1.2) is well defined, remains in U (xo, t*)

for all n > 0 and converges to a unique solution z* of equation F(z) = 0in U(xg,t*).
Moreover the following estimate holds for all n > 0:

| zn — 2" ||< * — tn, (2.64)

by = (2.63)

where, sequence {t,} (n > 0) is given in Lemma 1.
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Proof. We shall show using induction on the integer m:
“ ITm+l — Tm “S tmt+1 — tm (2.65)
and

| ¥m+1 — Tma1 |< Sme1 = tme1- (2.66)

Estimates (2.65) and (2.66) hold for m = 0 by the initial conditions.
Let us assume (2.65), (2.66) hold true and z,,,, Y, € U(xo,t*) foralln <m + 1.
Using (2.58), we obtain:

_ Tn + Yn To + Y
[ 45" (Ao —4n) | < Lo | "5 = =5 |
Lo )
< — T —To || + || Yn —
<3 |2 =20 1+ 19— 0 | 06
< L (tn-t0)+ o= )

= o (tn+50) <1 (by (2.26)).

It follows from (2.67) and the Banach lemma of invertible operators [4], {7], that A,!
exists so that

1
A7V A IS ——————. 2.68
” n 0 ”— 1 _eo (tn +3n) ( )
In view of (1.2), we obtain the approximations:
xm + m
F(emi) = F(ams1) = F@m) = (2 ) @my —om)  (2.69)

F(Zm+2) = F(zmt2) — F(zmy1) — F( ) (Ym+1 — Tmt1)- (2.70)

2
1
By composing both sides of (2.69), (2.70) by Ay ! using Lemma 3 for § = 3 G =
Ay L F, we obtain:
L2 a

“ Aal F(_’L‘m+1) ”S 4(7*_—1—)’—(—&—_{_—2)‘ ” Tm+1—Tm ”2+as E(tm+1 -—tm)1+ﬁ (271)
and
—_ L2,a o
| Agt F(#my2) [I< et @t | Zm+2 = Tma1 270 £ (Emt2 — tms1)' 2,
2.72)
respectively.

Using (1.2), (2.68), (2.17), (2.18), (2.71) and (2.72), we obtain:

I Zme2 = Tmer | < [ Aty Ao I 1 AT F(@mae) |l
¢ (tm+1 - tm)H-'6

<
- 2 (1 — f() (tm+1 + 3m+1))
= tm+2 — tm+1
and
| ymsz = Tmez | S | Azks 4o | | 3" F(zmea) |
< £ (tmy2 — tmy1)'HP

2 (14 (tmy1 + Sm+1))
= Sm+2 — lm+2,

which complete the induction for (2.65) and (2.66).

T
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By Lemma 1, (2.65) and (2.66), sequence {z,} (n > 0) is Cauchy sequence in a Banach
space X’ and as such it converges to some z* € U(xo,t*) (since U(xg,t*) is a closed set).
By letting . — oo in (2.71), we obtain F(z*) = 0.

Finally to show uniqueness, let y* € U(xo, t*) be a solution of equation F(z) = 0.

Let:

1
M= / Fl(z* +t (" —a)) dt. 2.73)
0

Using (2.58), we obtain in turn:

— ! o + . . .
1A (Ado—M) [ < Lo | 2228 (@ 4@y —2) || dt
01 2

o — %)+ (yo — x*
< LO/O (l—t) “(0 )2(y0 )“+
(yo —y*) + (w0 — ¥*
F R Bl E YT P
I (2.74)
< D (oot I+ Im-ot I+ 115 -2l +
I = wll)
LO * _ *
< LAt =Lot' <1 (by (226)).
In view of (2.74) and the Banach lemma on invertible operators, M~ exists.
It follows from the identity:
0=F(z*) - F(y*) = M(z* - y*),
that
v =y
That completes the proof of Theorem 4. O
Remark 5. (a) The most appropriate choices for § in Lemmas 1 and 2 seem to be

& = 6; and § = 4, respectively.

{b) Note that the conclusions of Theorem 4 hold if Lemma 1 is replaced by Lemma 2
and (2.18) by (2.48).

(c) The limit point t* (see Theorem 4) can be replaced by t** given in closed form by
(2.19).

3. APPLICATIONS

Let us provided a numerical example.

Example 1. Let X =Y =R 20 =1,D={z : [z —x9| <1—9}, v € [0,%),and
define function F' on Uy by
F(z) =2® — . (3.1)
The Kantorovich hypotheses for Newton’s method are [4], [7]:
I F'(@o)™ (F'(#) = F'@) <K z—yll, forallz,yeD (32

and .
hg =2Kn<l1. 3.3)
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Using (3.1) and (2.60) (for xy = yo = 1), we obtain
77=%(1_'Y) and K =2(2-7). (G4
The Kantorovich condition is violated since:
% -7 (@2—-v)>1 forall e [0,%).

Hence, there is no guarantee that Newton’s method starting at £, = 1 converges to * =
¥

However, the condition of our Theorem 4 under the conditions of Lemma 2 are satisfied,
say for y = .49.

Indeed, using (2.1), (2.40)—(2.43), (2.60), (2.61) and (3.1), we obtain:

v = 2.749087577,

J4 = 0723581, &0 = .008401651,
0y =104, Voo = Too = 5733, and § = 8.
Then all hypotheses of Theorem 4 hold. Hence, Werner's method (1.2) converges to z* =
/49 = .788373516.

CONCLUSION

We provided a semilocal convergence analysis for Werner’s method in order to approx-
imate a locally unique solution of an equation in a Banach space.
Using recurrent functions, a combination of Hélder condition on the second derivative and
center—Lipschitz condition on the first derivative, instead of only Holder and Lipschitz
conditions [9], [10], we provided an analysis with the following advantages over the work
in [9], [10}: weaker sufficient convergence conditions and larger convergence domain.
A numerical example further validating the results is also provided in this study.
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Abstract. In this article incompressible rotating mixing flows of New-
tonian fluid inside the cylindrical vessel are investigated. The numeri-
cal simulations are combination of stationary and rotating double stirrer
cases. The influence of rotational speed and rotational direction of stir-
rers have been observed on the predictions of the flow structure in the
dissolution rotating vessel with fixed and rotating stirrers. The problem is
relevant to the food industry, of mixing fluid within a cylindrical vessel,
where stirrers are located on the lid of the vessel eccentrically configured
with fixed and rotating stirrers. Here, the motion is premeditated as driven
by the rotation of the outer vessel wall, with various rotational speeds and
rotational directions of stirrers. A time-stepping finite element method is
employed to foresee the numerical solutions. The numerical technique
adopted is based on a semi-implicit Taylor-Galerkin/ pressure-correction
scheme, posed in a two-dimensional cylindrical polar coordinate system.
Variation with increasing speed of vessel, change in speed of stirrers and
change in rotational direction of stirrers in mixer geometry are investi-
gated, with respect to the re-circulating flow pressure isobars. The ulti-
mate objective is to envisage and adjust the design of dough mixers, so
that the optimal dough processing may be achieved markedly, with refer-
ence to work input on the dough.
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Key Words: Numerical Simulation, Finite Element Method, Newtonian Fluids, Rota-

tional Mixing Flows, Co-rotating Stirrer, Contra-rotating Stirrer and Mix-rotating Stirrer.

1. INTRODUCTION

In mixing industries the analysis of complex mixing of fluids remains a persistent chal-
lenge for engineers. In order to improve design of the mixing components and ensure safety
and satisfactory operating performance, precise knowledge of their transient response is re-
quired. In a first modelling step, design engineers must identify the meaningful physical
phenomena in their particular geometry. Generally, industrial problems are demanding to
treat with, mainly in the field of chemical process applications, such as mixing of dough
in a food processing industry [1—5], granular mixing, powder mixing processes [6], mix-
ing of paper pulp in paper industry and many other industrial processes. The case of a
circular cylinder confined in cylindrical fluid domains has already attracted a great atten-
tion due to its recurrence in the design of mixing components. Flow between a rotating
cylindrical vessel and rotating cylindrical stirrers is perhaps the most popular candidate in
experimental and numerical studies of rotational flows. Very few experimental/numerical
investigations have been reported in the literature on such type of flows.

Similar type of problems in the literature are as oscillating cylinders in cross or stationary
flow frequently observed in offshore structures and power cables with fluidstructure inter-
actions [2]. Building on the understanding of flow over a single stationary cylinder, many
researchers have recently focused attention on multiple stationary or oscillating cylinders.
Flow around two oscillating cylinders has characteristics of both an oscillating cylinder
and multiple cylinders [1, 6 and 7].

In many mixing processes the complicating factors are the use of agitators with stirrer
in fact that the agitator may be operated in the transitional regime, the use of the fluids
which exhibits very complex rheological behaviour and the rotational speed and rotational
direction of stirrers. Previous investigations of identical phenomenon also explored by
number of researcher, such complex problem is still persist a challenge [§—11].

The fully three-dimensional incompressible mixing flows had been simulated to obtain the
numerical solution for non-Newtonian fluids using generalised Navier-Stokes equation [5]
in finite vessel. Whilst, for modelling the dough kneading problem the two-dimensional
non-Newtonian mixing flows was investigated with different number and shapes of stirrers
[3—6]. Subsequently, the parallel version of this finite element scheme is also developed
[1-4].

The motivation for this work is to advance fundamental technology in modelling of the
dough kneading with the ultimate aim to forecast the optimal design of dough mixers
themselves, hence, leading to efficient dough mixing processing. The present work is one
of these forms, expressed as the flow between a rotating cylindrical vessel and two sta-
tionary as well rotating cylindrical stirrers in co-rotating, contra-rotating and mix-rotating
directions against the direction of rotational cylindrical vessel. Stirrers are located on the
mixing vessel lid, and placed in an eccentrically. In two-dimension, similar problem was
also investigated with different number and shapes of stirrers [4—6].

In the present work a semi-implicit Taylor-Galerkin/Pressure-Correction (TGPC) time-
marching scheme adopted, which has been developed and refined over the last couple
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of decades. The flow is modelled as incompressible via so-called TGPC finite element
scheme posed in a two-dimensional cylindrical polar coordinate system which applies a
temporal discretisation in a Taylor series prior to a Galerkin spatial discretisation. A semi-
implicit treatment for diffusion is employed to address linear stability constraints. An
inelastic model with shear rate dependent viscosity is considered [5]. This scheme, firstly
conceived in chronological form, is appropriate for the simulation of various types of in-
compressible Newtonian flows [1].

In Section 2, the complete problem is specified and the governing equations and numerical
method are described in Section 3. Numerical results and discussions are presented in
Section 4 and conclusions are drawn in Section 5.

2. PROBLEM SPECIFICATION

The problem addressed in this article is a cylindrical vessel with a couple of rotating

cylindrical stirrers located eccentrically cinfugered in the side of the vessel. The fluid is
driven by the outer vessel wall and two rotating cylindrical stirrers fixed at the top of the
vessel. Fixed and rotating stirrers are adopted. initially, the flow analyse between two
stationary stirrers and rotating cylindrical vessel, to validate the finite element predications
in this cylindrical polar co-ordinate system to compare the present numerical predictions
against numerical results obtained in previous investigations [3—6]. Subsequently, three
alternative rotational directions (Co-rotating, Contra-rotating and Mix-rotating) and three
rotational speeds (half, same and double against the speed of cylindrical vessel) of stirrers
are investigated.
Rotational Direction are shown in figure—1 (a), (b) and (c) for Co-rotating, Contra-rotating
and Mix-rotating directions of stirrers respectively. Computational domain and finite el-
ement mesh for the study involved is shown in figure—2. For the finite element mesh,
triangular elements are selected in the current research work. Total numbers of elements
are 8960, nodes and degrees-of-freedom, are 18223 and 40057 respectively. Details on
mesh convergence, initial and boundary conditions reader is referred to our pervious inves-
tigations [1—6]. In this study, solution fields of interest are presented of flow structure and
pressure differential through contour plots of streamlines and isobars respectively [1].

FIGURE 1. Rotational direction of eccentric rotating cylinderical flow,
with double stationary and rotating stirrers.
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FIGURE 2. Computational domain and finite element mesh of eccentric
rotating cylinderical flow, with double stationary and rotating stirrers.

To provide a well-posed specification for each flow problem, it is necessary to prescribe
appropriate initial and boundary conditions. Simulations commence from a quiescent ini-
tial state. Boundary conditions are taken as follows. For stationary stirrer the fluid may
stick to the solid surfaces, so that the components of velocity vanish on the solid inner stir-
rer sections of the boundary (v, = 0 and vg = 0). For non-stationary stirrer, fixed constant
velocity boundary conditions are applied. For co-rotating stirrer, vanishing radial veloc-
ity component (v, = 0) is fixed and for azimuthal velocity component is fixed with three
different non-dimensional speeds (vg = 0.5, 1 and 2 unit). Similarly, for contra-rotating
stirrer only azimuthal velocity component is changed and fixed in reverse direction (i.e.,
vp = -0.5, -1 and -2 unit). On the outer rotating cylinder vessel a fixed constant velocity
boundary condition is applied (v, = 0 and vg = 1 unit), and a pressure level is specified
as zero for both co-, contra- and mix-rotating stirrers on vessel wall. For stream function,
outer cylinder is fixed zero and at inner stirrer is left unconstrained, being solutions on
closed streamlines.

3. GOVERNING SYSTEM OF EQUATIONS AND NUMERICAL SCHEME

Incompressible rotational flows of isothermal Newtonian fluid in two-dimensions can be
modelled through a system comprising of the generalised momentum transport and conser-
vation of mass equations. The coordinate reference frame is a two-dimensional cylindrical
coordinate system taken over domain 2 in two-dimensional system. In the absence of
body forces, the system of equations can be represented through the conservation of mass
equation, as,

V-u=0, @G. 1)

the conservation of momentum transport equation, as,
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=_—VZu—u-Vu- Vp, 3.2

where, u is the fluid velocity vector field, p is the isotropic fluid pressure (per unit density),
t represents time and V is the spatial differential operator.

Relevant non-dimensional Reynolds number is defined as:

VR
Re = ”T, (3.3)

The characteristic velocity V is taken to be the rotational speed of the vessel, the character-
istic length scale is the radius, R, of a stirrer and p is the fluid density and the characteristic
viscosity y is the zero shear-rate viscosity. '

Appropriate scaling in each variable takes the form. At a characteristic rotational speed 50
rpm and zero shear viscosity of 105 Pa s, scaling yields dimensional variables p = 2444 p*.
To compute numerical solutions through a semi-implicit Taylor-Galerkin/pressure-correction
scheme in this study, a time-marching finite element algorithm is employed, based on a
fractional-step formulation. Briefly, this involves discretisation, first in the temporal do-
main, obtain through Taylor series expansion and a pressure-correction operator-split tech-
nique, to build a second-order time-stepping scheme. Spatial discretisation is achieved
via Galerkin approximation for the momentum equations. The finite element basis func-
tions employed are quadratic (¢;) for velocities, and linear (¢);;) for pressure. A detail on
numerical algorithm, fully discrete system and definition of matrices is described can be
found [9—12].

4. NUMERICAL RESULTS AND DISCUSSIONS

Two different directions are employed to analysed the predicted solutions: firstly, change
in rotational direction (co-rotating, contra-rotating and mix-rotating) and second, rotational
speed (vg = %, 1, 2; half, same and double respectively) of the stirrer against to the speed
of vessel. This leads to testing with respect to increasing viscosity levels (decrease of
Reynolds number) for Newtonian fluid and comparison of flow structure and pressure vari-
ation across problem instances. The predicted solutions are displayed for Newtonian fluid
through contours plots of streamlines, and pressure isobars and these are plotted from min-
imum value to maximum value, over a range (in all figures Maximum values indicated with
SQUARE shape and Minimum Value indicated with OVAL shape).

The Reynolds numbers of Re = 8.0, Re = 0.8 and Re = 0.08, the corresponding zero shear
viscosities are i = 1.05 Pa s, ;1 = 10.5 Pa s and p = 105.0 Pa s. Of these levels, a range
of material properties is covered from those for model fluids, to model dough, to actual
dough, respectively.

4.1. Flow patterns and pressure differential for stationary stirrers with increasing
inertia. Computations are carried out at Re = 0.08, Re = 0.8 and Re = 8. The effect of
increasing Reynolds number upon streamline patterns on left and pressure differential on
right isobars are represented in contour plots for stationary stirrers in figure—3. At a low
levél of inertia, Re = 0.08, an intense recirculating region forms in the centre of the vessel,
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parallel to the stirrers and symmetrically intersecting the diameter that passes through the
centres of the vessel and stirrers. Flow structure remains unaffected as Reynolds number
rises to values of O(1); hence the solution field has been suppressed. However, upon
increasing Reynolds number up to eight, so O(10), inertia takes hold and the recirculation
region twist and shifts towards the upper-half plane, vortex intensity wanes and the vortex
eye is pushed towards the vessel wall. The flow becomes asymmetric as a consequence of
the shift in vortex core upwards. The diminishing trend in vortex intensity is tabulated in
Table 1.

Table-1: Vortex intensity for Newtonian fluids (.= 105, 10.5 and 1.05 Pas)
Speed of Re =008 Re=08 Re=80
Problem | “Giver [ Mim Max | Mm Max | Min Max
&g? Zero 0 3.7613 0 3.75964 0 3.61976
, Half 0 568479 0 568248 0 557629
Cot0ling ™ Same 0 775504 0 776814 0 7 99449
Double 0 119254 0 120221 0 13.4436
Contra Half [} 266273 0 766225 0 362743

rotating Same | 093386 | 202191 | -09386 | 2.01946 | -1.49938 | 181904
stirrer Double | -5.019 | 158684 | -5.0849 | 1.58592 | -7.41413 | 1.71834
Mix- Half ) 4.25444 0 4.25387 0 4.19542
rotating Same 0 542041 0 3.42036 0 5.42893
stirrer Double | -1997 | 7.84833 | -1.98886 | 7.85385 | -1.6173 | &11336

Comparable symmetry infiuence relate across the geometry variants in pressure differ-
ential, at Re = 0.08, symmetric pressure isobars appear with equal magnitude in non-
dimensional positive and negative extrema on the two sides (upper and lower) of the stirrers
in the narrow-gap. As inertia increases from Re = 0.8 to Re = 8, asymmetric isobars are
observed, with positive maximum on the top of the stirrer and negative minimum at the
outer stirrer tip (near the narrow-gap), numerical results are tabulated in Table 2.

Asymmetrical flow structure is observed in all variables and transversely all occurrence as
inertia increase from Re = 0.08 to Re = 8.0, recirculating flow-rate decrease by just five
percent. In non-dimensional terms above Re = (.08 (noting scale differences), there is in-
crease in pressure-differential rise by as much as twenty-two percent, at Re = 8.0, although
pressure differential increase on the lower part of the stirrers. For Newtonian fluid, the
extrema of recirculating region along with vortex intensity and pressure differential, are
tabulated for completeness in tables 1 and 2.

4.2. Flow patterns and pressure differential for co-rotating stirrers with increasing
inertia. With increasing Reynolds number from Re = 0.08 to Re = 8.0, equivalent field
kinematic data for co-rotating stirrers is presented in figure—4 and —5, to make direct
comparisons across all instances for Newtonian fluids, with rigorous reference to localised
vortex intensity and pressure drops are tabulated in tables 1 and 2.

Stream lines are shown for increasing rotational speed of the stirrer (from left to right),
double speed, same speed and half speed (vg = 0.5, 1.0 and 2.0 respectively) for co-rotating
case, only single vortex is formed, shown in figure—3. At Reynolds number 0.08, half
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speed of the stirrers the vortex is formed at the centre of the stirrers and is of the elliptical
shape in the horizontal direction and smooth in formation, but as the speed of the stirrers
is increased to double speed the vortex changes the direction from horizontal to vertical
and its size is large as compare to half speed of the stirrers also showing an increase space
between the centre of vortex and diameter of secondary streamline. Streamlines tend to
increase in density at the edges of the stirrers. At Reynolds number 0.8, half speed of the
stirrers the vortex changes the direction from horizontal to vertical and change noted at
the same speed is vice-versa, but at the double speed of the stirrers is the vortex twist to
the stirrers in rotational direction of the vessel. At Re = 8.0, half speed the diameter of
the vortex increases and the shape of the vortex is changed in circular shape similarly at
same speed, the diameter of the vortex decreases at the double speed and vortex centre
amplifies in the size. Consequently, the fluid recirculates at the centre of the vessel and
create vacuum in the centre of the vessel.

In figure—5, illustrates the pressure differential at all comparable parameter values for
co-rotating instances, The speed of stirrer is half virtually small change in the pressure
differential is observed and remain unaltered for all Reynolds numbers values, the pressure
differentials is very low and remain in order of two for all inertial values when increasing
the speed of stirrers from same to double speed, consequently, the pressure differentials
are noted high and is about seven times in negative extrema compare to stationary stirrer,
at Re = 8 and small change is observed in positive maxima. See Table—2.

Table-2: Pressure drop for Newtonian fluids (u.= 105, 10.5 and 1.05 Pas)
Spead of Re=008 Re=028 Re=80
Problem | “iver [ Mim | Max | Ma | Max | Mm | Max

Sattonary | 5. | 335114 | 333577 | -3.42489 | 327096 | -4.51328 | 3.20584

stirrer
Coroatine | BHE | 145201 | 14338 | T53811 | 1356 | -3.59639 | 094539
v e [ Same | 131501 | 12375 | -1.66359 | 0.87996 | -8.18721 | 051811
Double | 4.51104 | 4.35319 | 535531 | 3.79051 | -27.334 | 2.90016
Conta | Half | -5.06616 | 523019 | 538462 | 514477 | 6.71983 | 43179
sotating | Same | -7.18218 | 713753 | 740446 | 692244 | -10.0362 | 498229
srer  ["Double | 11,0943 | 10.9296 | -11.8754 | 10.2863 | -24.6213 | 693863
Mix. | Half | 569415 | 567199 | 581121 | 5.58275 | 845116 | 511985
rotating | Same | 8.10922 | 804915 | -8.42092 | 7.76947 | -13.7993 | 592129
sirer [ Double | -12.9865 | 12.757 | -14.064 | 11.7682 | -29.6726 | 850339

4.3. Flow patterns and pressure differential for contra-rotating stirrers with increas-
ing inertia. Corresponding field kinematics data for contra-rotating stirrers situation with
increasing Reynolds number at Re = (0.08, 0.8 and 8.0) the streamline contours and pres-
sure differentials are presented in figure—7 respectively. In figure—6, for contra-rotating
case, streamlines are demonstrate for increasing speed of the stirrers from half (left) to
double (right) against the speed of vessel the six vortices arises, and symmetric behaviour
around the stirrer. At the half speed of stirrers and Re = 0.08 there is embro vertices appear
in the narrow-gap of both stirrers, and in narrow gap as well in middle of the vessel, two
vortices are noted in the upper and lower region of vessel away from stirrer close to vessel
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wall. In the narrow gap, where stirrers spins in oppose direction of the vessel rotation, a
small vortex appear with low vortex intensity, as the speed of stirrers increase these vortices
strength up to fifty percent high at low Re = 0.08.

In table 1, minima and maxima of vortex intensity is tabulated when the vortex intensity is
observed with increase in inertia. As inertia takes hold in the central region of recirculation,
centres of vortices shift towards the upper and lower half plane in the direction of rotation
of the both stirrers against to the vessel. For all Reynolds number values, at double speed
of stirrers, the central vortices rotate in counter directions against two other vortices. These
recirculation regions have different rotational direction which is very important phenomena
in homogenisation of the fluid.

For all three instances, comparable equilibrium influence apply across the geometry vari-
ants in pressure differential, at Re = 0.08 and double rotational speed of stirrer, symmetric
pressure isobars appear with equal magnitude in non-dimensional positive and negative ex-
trema on both sides (upper and lower) of the stirrer in the narrow-gap as shown in figure—7.
The associated values of pressure differentials are tabulated in table 2. As inertia increase
from Re = 0.8 to Re = 8, asymmetric isobars are observed, with positive maxima on the
top of the stirrer and negative minima at the outer stirrer tip (near the narrow-gap), see
also Table 2. For the contra-rotating instance, in contrast to co-rotating case, the pressure
differentials are somewhat symmetrical in geometry at maxima and minima at twice the
speed of stirrer and at half the speed of stirrer for both inertial values Re = 0.08 and Re
= 0.8. However, upon increasing Reynolds number up to eight, thus O(10), inertia takes
hold the pressure differentials are observed asymmetrical, increasing the speed of the stir-
rer to double increases the pressure differentials more than twice in negative minima and
in contrast it decrease up to thirty five percent in positive maxima. Comparing against
co-rotating case at same double speed of stitrer increase in minima is merely eight percent
and increase in maxima is about thirty percent.

4.4. Flow patterns and pressure differential for mix-rotating stirrers with increas-
ing inertia. For mix-rotating stirrers, the field kinematics data with increasing Reynolds
number from 0.08 to 8.0 the streamline contours are shown in figure—8 and in figure—9
pressure differentials. For mix-rotating case, three vortices arise, one in right of the stirrer
rotate in same direction of vessel and in right and left of the stirrer rotate in opposite di-
rection of vessel. At the Re = 0.08 and the Re = 0.8 note the same behaviour for half to
double speed of stirrers respectively. There is two in the vicinity of both stirrers, and in
narrow gap as well in middle of the vessel, two vortices are noted in the upper and lower
region of vessel away from stirrer close to vessel wall. In the narrow gap, where stirrers
spins in oppose direction of the vessel rotation, a small vortex appear with low vortex in-
tensity, as the speed of stirrers increase these vortices strength up to fifty percent high at
low Re = 0.08. The growth in minima of vortex intensity is examine with increase in iner-
tia, however, it dominate in maxima of vortex intensity. As inertia takes hold in the central
region of recirculation centres of vortices shift towards the upper and lower half plane in
the direction of rotation of the both stirrers agamst to the vessel. For all Reynolds number
values at double speed of stirrer, the central vortices rotate in counter directions against
two other vortices. These recirculation regions have dlfferent rot 1| dlrecnon wh1ch is
very important phenomena in homogenisation of the fluid. i
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5. CONCLUSIONS

Computational results of cylindrical rotating vessel with couple of cylindrical rotating
stirrers present certain characteristics of symmetry, the rotation of the double stirrer case
against stationary stirrer case in co-rotating, contra-rotating, and mix-rotating directions
are being investigated with increasing inertia. It is confirmed that, fluid flow structure lose
its symmetry and recirculating region move upwards in the direction of vessel motion with
increasing inertia and non-dimensional pressure differential increases for stationary stirrer
case. For co-rotating stirrer case, single recirculating region develops in the centre of the
stirrers and fluid suppressed in direction of rotation of the vessel with increasing inertia
and speed of stirrer. Whilst at twice the speed of stirrer pressure differentials are higher
and lower at lower speed of stirrer and for the case mix-rotating stirrer different position
has been analysed, a re-circulating region develops in the right of the stirrers rotating in
direction of vessel and left and right of the stirrer rotating in anti-direction of vessel and
fluid suppressed in direction of rotation of the vessel with increasing inertia and speed of
stirrer. Whilst at twice the speed of stirrer pressure differentials are higher and lower at
lower speed of stirrer.

Contra-rotating case flow structure and pressure differential illustrates completely different
picture in contrast to above cases. There is six recirculating regions have been examined
with different position of vortex centres. The pressure differentials are generally higher,
and similar balance in extrema is noted to those flows. However, the position, in those
negative maxima exceeds to positive minima by about four times and in the mix-rotating
the narrow gap apears where stitrers spins in oppose direction of the vessel rotation, a small
vortex appear with low vortex intensity.

We have productively demonstrated the use of two-dimensional numerical simulations for
this complex mixing process using Newtonian fluid flow solver for the industrial flow of
dough mixing. Promising future directions of this work are investigation of rotation of two
stirrers case in co-rotating, contra-rotating and mixed rotating directions, changing material
properties using non-Newtonian fluids and introducing agitator in concentric configured
stirrer. Through the calculative capability generated, we shall be able to relate this to mixer
design that will ultimately impact upon the processing of dough products.
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FIGURE 3. ‘Streamline contours and Pressure isobars of stationary stir-
rers (vg = 0.0).with increasing Reynolds number (Re = 0.08, 0.8 and 8.0)
from top to bottom. .-,
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Re =8.0

FIGURE 4. Streamline contours for co-rotating stirrers with increasing
speed of the stirrers (vg = 0.5, 1.0 and 2.0) from left to right against the
speed of the vessel and increasing Reynolds number.
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FIGURE 5. Pressure isobars for co-rotating stirrers with increasing

speed of the stirrers (vg = 0.5, 1.0 and 2.0) from left to right against

the speed of the vessel and increasing Reynolds number.
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Re=8.0

FIGURE 6. Streamline contours for contra-rotating stirrers with increas-
ing speed of the stirrers (vg = 0.5, 1.0 and 2.0) from left to right against
the speed of the vessel and increasing Reynolds number.
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FIGURE 7. Pressure isobars for contra-rotating stirrers with increasing
speed of the stirrers (vg = 0.5, 1.0 and 2.0) from left to right against the
speed of the vessel and increasing Reynolds number.
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Re=8.0

FIGURE 9. Pressure isobars for Mix-rotating stirrers with increasing
speed of the stirrers (vg = 0.5, 1.0 and 2.0) from left to right against
the speed of the vessel and increasing Reynolds number.
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nite element method is employed to predict the solutions. The numerical
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1. INTRODUCTION

Mixing flows within the cylindrical vessel are investigated in this article, and is the ex-
tension of the previous work to achieve the solution of industrial challenging problems
in mixing processing, the design of the mixer with rotational mixing in a stirred vessel
to predict power consumption, generally industrial problems are challenging to deal with,
particularly in the field of chemical process applications, such as mixing of dough in a food
processing industry [1, 2, 3, 4, 5], granular mixing, powder mixing processes [6], mixing
of paper pulp in paper industry and many other industrial processes. The present problem
is one of these forms, expressed as the flow between an outer rotating cylindrical vessel and
double stationary and rotating cylindrical stirrers rotate in three different rotational direc-
tions (co-rotating, contra-rotating and mix-rotating directions) and three different speeds
(half, same and double) of the stirrers against the speed of the cylindrical vessel.

Stirrers are located on the mixing vessel lid. Under two-dimensional assumptions, the
vessel essentially is considered to have infinite height. Elsewhere, the finite vessel problem
in three-dimensions [6, 7] has been analysed. In two-dimension, similar problem is also
investigated with different number and shapes of stirrers [8, 9, 10]. The motivation for this
work is to advance fundamental technology in modelling of the dough kneading with the
ultimate aim to predict the optimal design of dough mixers themselves, hence, leading to
efficient dough processing.

The simulation procedure addresses the numerical solution of the two-dimension Navier-
Stokes equations for incompressible flow in cylindrical frame of reference. This involves a
so-called Taylor-Galerkin finite element formulation, which applies a temporal discretisa-
tion in a Taylor series prior to a Galerkin spatial discretisation. A semi-implicit treatment
for diffusion is employed to address linear stability constraints. The flow is modelled as
incompressible via a pressure-correction scheme [8, 9, 10, 11]. The present study adopts a
semi-implicit Taylor-Galerkin/Pressure-Correction (TGPC) time-marching scheme, which
has been developed and refined over the last couple of decades. This scheme, initially con-
ceived in sequential form, is appropriate for the simulation of incompressible Newtonian
flows [11].

The object is to comprehensively examine the influence of speed of stirrers and variation
in inertia, assessing how this imposes upon the flow structure, rate-of-work done generated
and power consumption. The corresponding applications of dough kneading are the target
through build-up of the material structure, achieved by maximizing the local rate-of-work
done per unit power. Computations are performed for Newtonian fluid.

In Section 2, the complete problem is specified and the governing equations and numerical
- scheme are described in Section 3. This is followed, in Section 4, by Simulation results for
all cases are presented and our conclusions are drawn in Section 5.

2. PROBLEM SPECIFICATION

The two-dimensional mixing flows of Newtonian fluids are investigated, relevance to the
food industry. In reality, within the industrial process, fluid is driven by the rotation of
the lid of the vessel would rotate with stirrers attached. For simulations, the mixing is
performed through the rotation of cylindrical-shaped vessel and the stirrers are held in
place by being attached to the lid of the vessel. A fixed and rotating double stirrer in
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an eccentric configuration is adopted. Initially, the problem is analysed for rotating flow
between stationary stirrers and rotating cylindrical vessel, to validate the finite element
predications in this cylindrical polar co—ordinate system to compare the numerical results
against results obtained in previous investigations [8, 9]. Subsequently, different rotational
directions with three setting options (co—rotation, contra—rotation and mix —rotation) of
stirrers are also investigated against stationary stirrers in a rotating cylindrical vessel.

In this study, solution fields of interest are presented through contour plots of velocity
gradients (Vu), shear—rate (¥), shear—stress(7,.9), hoop and radial stress difference (/V; =
Teo — Trr) and power (P). Power may be equated to the spatial integral of the rate-of-work
done where I, is the second invariant of rate-of-deformation tensor and w is rate of work
done over total time ¢,,, v and vy are velocity components in radial °r’ and azimuthal ’§’
direction respectively and w is domain of interest in two dimensional polar coordinate.
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FIGURE 1. Computational domain and finite element mesh of eccentric
rotating cylinderical flow, with double stationary and rotating stirrers.
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Domain and finite element mesh for the problem involved is shown in figure—1. Total
number of elements, nodes and degrees—of—freedom are 8960, 18223 and 40057 respec-
tively. Details on mesh convergence, initial and boundary conditions reader is referred to
our per,i/jous investigations (7, 8, 9]. In this study, solution fields of interest are presented
through contour plots of velocity gradients, shear—rate, shear—stress and power. Power
may be equated to the spatial integral of the rate—of—work done [8, 9].

3. GOVERNING SYSTEM OF EQUATIONS AND NUMERICAL SCHEME

Two-dimensional incompressible rotational flows of isothermal Newtonian fluids can be
modelled through the continuity and generalised momentum transport equations in a cylin-
drical polar coordinate system. In the absence of body forces, after applying appropriate
scaling in each variable (u=Vu*, p = V2 p*, t = R t*/ V, where R and V are characteristic
radius and velocity of vessel respectively and the time divided by the characteristic time)
takes the form of the non-dimensional system of equations can be represented through the
conservation of mass equation, as,

V-u=0, 3. 1)

the conservation of momentum transport equation, as,

Ou 1 _o
E_R—ev u—u-Vu— Vp, 3.2

where, u is the fluid velocity vector field, p is the isotropic fluid pressure (per unit density),
d is the rate of deformation tensor, t represents time and V is the spatial differential op-
erator. For Newtonian fluid case, pg is the corresponding constant fluid viscosity at zero
shear-rate. Relevant non-dimensional Reynolds number is

pVR
Ho

Re =

3.3)

The characteristic velocity V is taken to be the rotational speed of the vessel, the character-
istic length scale is the radius, R, of a stirrer and is the fluid density. A detail on numerical
algorithm, fully discrete system and definition of matrices is described and can be found in
(8,9, 11, 12].

4. NUMERICAL RESULTS AND DISCUSSIONS

The predicted solutions are analysed in two different directions: change in rotational di-
rection (co—rotating, contra—rotating and mix—rotating) and speed of the stirrers. This
leads to testmg with respect to increasing viscosity levels for Newtonian fluid, compari-
son of contour plots of velocity gradient, shear-rate, shearstress and power consumptlon
across problem instances. Contours are plotted from minimum value to maximum value,
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over a range. Numerical solutions are also analysed through graph of work done over time
interval and power consumption. Comparative diagnostics may be derived accordingly.

Various increasing levels of zero-shear viscosities g are considered, from which Reynolds
numbers are computed, as defined above. For Reynolds numbers Re = 8.0, Re = 0.8 and Re
= (.08, the corresponding zero shear viscosities are g = 1.05 Pa s, po = 10.5 Pa s and pg
= 105.0 Pa s. respectively. Of these levels, a range of material properties is covered from
those for model fluids, to model dough, to actual dough, respectively. In this study there
is no major difference found between model fluids and model dough so for Re = 0.8 not
discussed for model dough, maximum attention has been given on model fluids and actual
dough in this paper but results are given for model dough i.e., Re = 0.8 in tables.

4.1. Effects of increasing inertia on velocity gradient, shear-rate, shear stress and
power consumption for stationary stirrers: For Re = 0.08 and Re = 8 computations are
carried out to demonstrate the effect of increasing inertia upon velocity gradient, shear-
rate, shear stress and power consumption. In figure—2, contour plots for stationary stirrers
are presented. At a low level of inertia, Re = 0.08, contours of all variables demonstrate
symmetric formations in the central region of the vessel, parallel to the stirrers and symmet-
rically intersecting the diameter that passes through the centres of the vessel and stirrers.
Flow remains unaffected as Reynolds number rises to values of O(1), i.e., Re = 0.8; hence
this data has been suppressed. However, upon increasing Reynolds number up to eight, so
0O(10), i.e., Re = 8.0; inertia takes hold and the contour region twist in the direction of ro-
tation of the vessel and shifts towards the upper and lower-half plane, symmetry breakups
in velocity gradient, shear-rate and shear stress and the material is pushed towards the ves-
sel wall. The flow becomes asymmetric as a consequence of the shift in core of material
upwards. The trend of rise in maxima and drop in minima is observed and the values are
tabulated in Table—1.

Similar symmetry arguments apply across the geometry variants in all variables, at Re
= (.08, symmetric isobars for velocity gradient, shear-rate, shear stress and power con-
sumption appear with unequal magnitude in non-dimensional positive extrema and nega-
tive minima on the two sides (upper and lower) of the stirrers in the narrow-gap. As inertia
increases from Re = 0.8 to Re = 8, asymmetric contours are observed in all variables and
across all instances, with positive maximum on the top of the stirrers and negative mini-
mum at the outer stirrers tip (near the narrow-gap), see also Table—1. In non-dimensional
terms above Re = 0.08 (noting scale differences), there is increase in velocity gradient,
shear-rate and shear stress rise by as much as two percent in positive maxima, at Re =
8.0. However, in-contrast, the first stress difference decrease in same order approximately
is observed. Whilst in power consumption and work-done which is about ten percent in-
crease in maxima is observed with increasing inertia. The graph of work-done and power
consumption is plotted in figure—3 against non-dimensional time step variants. Initially,
work-done and power consumption is very high to drive the flow in the vessel. Subsé:
quently, this high value for power consumption decreases gradually and reaches at some
plateau for steady-state solution. Whilst, sum of work-done increase in same fashion up to
~ steady-state.

4.2. Effects of increasing inertia on velocity gradient, shear-rate, shear stress and
power consumption for co-rotating stirrers: Contours of all variables velocity gradient,
shear-rate, shear stress and power consumption with increasing Reynolds number 0.08 to
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TABLE 1. Various variables for stationary stirrers with Newtonian
fluids (0 = 105, 10.5 and 1.05 Pas);

Variables Re =0.08 Re=0.8 Re=8.0
Minima Maxima Minima Maxima Minima Maxima
Velocity gradient -1.14461 -1.14461 -1.14293 446645 -1.15125 4.68969

Shear rate 0.00 4.4631 0.002  4.46645 0.00 4.68969
Shear stress -1.03394 223155 -1.05805 2.23322 -1.33561 2.41851
Stress Difference  -6.03566 6.0248 -6.08941 598074 -6.90787 5.79796
Power 0 19.9192 0 19.9491 0 219932

8.0 and increasing rotational speed of the stirrers for half, same and double presents in
figure —4, —6 and —8 respectively, in the same direction of the rotation of the vessel for
co-rotating stirrers.

As inertia increase from Re = 0.08 to Re = 8, asymmetric contours are observed, with
positive maxima on the top of the both stirrers and negative minima at the outer stirrers
tip, numerical results are shown in the Table—2. In the narrow gap, where stirrers rotates
in the same direction of the vessel rotation, small values in minima and maxima appear for
all variable instances and these values further decrease as the speed of stirrers decrease at
low value of Re = 0.08. The increase in minima and maxima is observed and strengthen
approximately from double to four times with increase in inertia at Re = 8.0.

For all instances, comparable equilibrium influence apply across the geometry variants in
minima and maxima of velocity gradient, shear-rate and shear-stress, at Re = 0.08 and
double rotational speed of stirrers, symmetric contours appear with equal magnitude in
non-dimensional positive and negative extrema on both sides (upper and lower) of both
stirrers in the narrow-gap as shown in figure—8.

The associated values of all variables are tabulated in Table—2 with increasing the speed
of stirrers against the speed of vessel from half to double. As speed of stirrers increase,
increase in the minima and maxima are noted for all cases at both inertial values. The ve-
locity gradients are somewhat symmetrical in geometry at maxima and minima at twice the
speed of stirrers and at half the speed of stirrers for both inertial values Re = 0.08 and Re =
0.8. However, upon increasing Reynolds number up to eight, thus O(10), inertia takes hold
the tabulated variables are observed asymmetrical and the maxima and minima are also
increase. Increasing the speed of the stirrers to double increases the power consumption
remains same in minima and in contrast it increase up to twenty five percent in positive
maxima.

In figure—5, —7 and —9, the graph of work-done and power consumption is shown against
non-dimensional time step variants. Initially, work-done and power consumption is very
high to drive the flow in the vessel. Subsequently, this high value for power consumption
decreases fastely at a stage and reaches at some plateau for steady-state solution for co-
rotating stirrers at the half and same speed but for double speed this passion is changed and
decreases gradually. Whilst, work-done increase in same fashion up to steady-state.
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TABLE 2. Various variables for co-rotating stirrers with Newtonian
fluids (g9 = 105, 10.5 and 1.05 Pas);

Variables  Speed Re =0.08 Re=0.8 Re =8.0
Minima Maxima Minima Maxima Minima Maxima
Velocity Half -0.11208 2.00842 -0.13028 2.01165 -0.28207 2.18178
gradient Same -0.45398 1.69145 -0.45478 1.68572 -0.53672 1.9848
Double -5.37553 4.54706 -5.41958 4.57853 -7.24099 6.49085

Shear Half  0.00083 1.87109 1.87432 1.87432 0.00173 434502
rate Same 0.00051 1.30313 1.29741 1.29741 0.00142 9.89532

Double 0.02125 5.92486 5.96891 5.96891 0.00394 33.1876
Shear Half -0.39279 1.00421 -0.4102 1.00583 -0.5839 1.79271
stress Same -0.44277 0.84572 -0.5126 0.84286 -1.1181 0.94252

Double -2.68777 227353 -3.1924 = 228926 -7473 4.65567
Stress Half -2.69669 2.6867 -2.74653 2.64657 -3.5136 2.44376

difference  Same -2.12539 2.45995 -1.96852 2.3089 -1.3368 3.62055
Double -7.31813 7.38789 -7.07431 7.85733 -5.74278 16.7961

Power Half 0 3.50097 0 3.51308 0 4.17976
Same 0 1.69814 0 1.70324 0 224019

Double 0 35.104 0 35.6279 0 35.6742

4.3. Effects of increasing inertia on velocity gradient, shear-rate, shear stress and
power consumption for contra-rotating stirrers: Increasing Reynolds number from Re
= (.08 to Re = 8.0 for contra-rotating double stirrers, equivalent field kinematic data in all
variables is presented in figure— 10 for half speed, figure— 12 for same speed and figure— 14
for double speed of the stirrers against the speed of the vessel, to make direct comparisons
across all occurrences for Newtonian fluids, with particular reference to localised velocity
gradient, shear-rate, shear stress and power consumption.

Isobars are shown for increasing speed of the stirrers from half speed to double speed
display symmetry patterns at low inertial value Re = 0.08 and asymmetric configuration at
higher value of inertia Re = 8.0 is shaped. In compare to the stationary stitrer case where
formation of Newtonian stresses and other parameters are symmetric for all instances and
at the same parameters asymmetric formation is observed, see figures—10, —12 and —14.
At Re = 0.08, when increases the speed of stirrers for half, same and double respectively,
no symmetry break-up is observed but at Re = 8, introducing the motion of stirrers from
half speed to double speed of the stirrers effective changes has been observed in the stresses
and other variables.

The graph illustrates the work-done over time interval and power consumption at all com-
parable parameter values for contra-rotating instances in figure—11, 13 and 15 for half



54 R. A. Memon, M. A. Solangi and A. Baloch

speed, same speed and double speed of stirrers respectively. The behaviour for all in-
stances is same, however, for both Reynolds numbers the comparable values are much
higher and is almost ten times from half speed to double speed of the stirrers.

The tabulated values are in Table—3, minima and maxima for various variables. For ve-
locity gradient, shear-rate, shear-stress and first stress difference between azimuthal and
radial stresses, increase in the speed of stirrers from half to double, increase in the minima
is observed. At low inertial value, Re = (.08, this increase is almost double, however, at
higher value of inertial, Re = 8, is approximately double to four times increase is noted.
Whilst for power consumption is about five times approximately.

TABLE 3. Various variables for contra—rotating stirrers with Newtonian
fluids (140 = 105, 10.5 and 1.05 Pas);

Variable Speed Re=0.08 Re=0.8 Re=8.0
Minima Maxima Minima Maxima Minima Maxima
Velocity Half -2.58992 6.92803 -2.58798 6.92932 -2.43719 7.02753
gradient Same -4.01149 9.38669 -4.01449 9.38694 -5.59621 9.5513
. Double -6.8582 14306 -6.90486 14.3229 -11.4476 16.8857
Shear Half 0.00089 7.06537 0.00218 7.06665 (.00806 7.16486

rate Same 0.00514 9.66136 0.00502 9.66161 0.00408 6.82598
Double 0.01690 14.8553 0.011238 14.8423 0.00481 22.4677
Shear Half -1.67833 3.46402 -1.68435 3.46468 -1.74401 3.51377
stress Same  -2.3286 4.69335 -2.40102 4.69347 -3.21727 8.90697
Double -3.64196 7.153 -3.96812 7.16147 -8.93301 20.743
Stress Half -9.38309 9.38414 -9.38008 9.39063 -9.46162 9.56863

difference Same  -2.7151 12.741 -12.6002 2.8584 -11.7256 15.1497
Double -19.3628 19.4766 -8.8845 20.0245 -16.9897 36.4228
Power Half 0 49.9194 0 49.9376 0 51.3353
Same 0 93.3419 0 93.3466 0 96.5495
Double 0 220.681 0 221.184 0 289.588

4.4. Effects of increasing inertia on velocity gradient, shear—rate, shear stress and
power consumption for mix—rotating stirrers: For mix-rotating stirrers, the field kine-
matics data with increasing Reynolds number from 0.08 to 8.0 with particular reference to
localised velocity gradient, shear-rate, shear stress and power consumption are shown in
figure —16, —18 and —20 for half, same and double speed of stirrers respectively to make
direct comparisons across all instances for Newtonian fluids. For this case, interested phe-
nomena arise. In the case of half speed at low inertial value Re = 0.08, isobars are noted
in around of the stirrer rotate in same direction of vessel and in right and left of the stirrer
rotate in opposite direction of vessel with symmetric pattern in upper and lower region of
vessel. When inertia increase upto Re = 8.0 isobars twist towards the upper region in the
direction of rotation of the vessel. Whenever, situation examines vice-versa in the case of
same speed of the stirrers.

Isobars are shown for double speed of the stirrers demonstrates symmetry patterns at low
value of Reynolds number Re = 0.08 is formed in upper and lower region of the vessel.
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TABLE 4. Various variables for mix-rotating stirrers with Newtonian
fluids (ug = 105, 10.5 and 1.05 Pas);

Variable Speed Re=0.08 Re=0.8 Re=8.0
Minima Maxima Minima Maxima Minima Maxima
Velocity Half -0.11208 2.00842 -0.13028 2.01165 -0.28207 2.18178
gradient Same -0.45398 1.69145 -0.45478 1.68572 -0.53672 1.9848
Double -5.37553 4.54706 -5.41958 4.57853 -7.24099 6.49085

Shear Half 0.004395 4.70657 0.004183 7.41495 0.00363 8.02225
rate Same 0.003052 103516 0.002647 10368 0.00142 11.6491

Double 0.026373 16.2418 0.026461 14.2848 0.02993 21.8123
Shear Half -2.04905 3.63462 -2.04643 3.63881 -2.11429 3.94246
stress Same -4.05551 5.03848 -4.05503 5.04669 -5.24735 5.68721

Double -8.46209 8.15661 -8.48911 8.19283 -21.4674 10.9102
Stress Half -9.87923 9.8799 -9.88829 9.89485 -10.742 10.7666

difference  Same  -3.6366 13.6632 -13.5415 13.807 -14.1731 18239
Double -2.3713 214936 -20.8918 22.1177 -20.7601 45.27%4

Power Half 0 54.8573 0 54.9815 0 64.3564
Same 0 107.156 0 107.496 0 135.701

Double 0 263.796 0 265.196 0 405.861

In contrast to the half and same speed of mix-rotating stirrers case where formation of
Newtonian stresses and other parameters are symmetric for all instances, see figures — 20.
At Re = 0.08 and for double speed of stirrers, no symmetry break-up is observed. However,
at Re = 8, effective has been observed in the stresses and other variables and isobars twist
towards the upper and lower region in the rotational direction of the vessel.

In figure —17, —19 and 21, for mix-rotating instances, graphs illustrate the work-done over
time interval and power consumption at all comparable parameter values. The behaviour
for all instances is same, however, for both Reynolds numbers the comparable values are
much higher and is almost ten times from half speed to double speed of the stirrers.

Minima and maxima for velocity gradient, shear-rate, shear-stress, first stress difference
and power consumption are tabulated in the Table4, increase in the speed of stirrers from
half to double, increase in the minima is observed. At low inertial value, Re = 0.08, this
increase is almost double, however, at higher value of inertial, Re = 8, is approximately
three times. Whilst for is about eight times.

5. CONCLUSIONS

The use of a numerical flow simulator as a prediction tool for this industrial flow problem
has been successfully demonstrated. For this complex mixing process, using Newtonian
fluid, physically realistic simulations have been provided.

Addressing the rotation of the double stirrer case with stationary stirrers against the three
cases of rotating stirrers in co-rotating, contra-rotating and mix-rotating directions are in-
vestigated with increasing inertia form Re = 0.08 to Re= 8.0. For stationary stirrers case,
it is clearly demonstrated contours of all variables demonstrate symmetric formations in
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the central region of the vessel, parallel to the stirrers at Re = 0.08 and asymmetric when
inertia reaches at Re = 8.0 and material moves in the direction vessel rotation.

The associated values of all variables for the case of co-rotating stirrers as speed of stirrers
increase, increase in the minima and maxima are noted for all cases at both inertial values.
The velocity gradients are somewhat symmetrical in geometry at maxima and minima at
twice the speed of stirrers and at half the speed of stirrers for both inertial values variables
are observed asymmetrical and the maxima and minima are also increase. - Increasing the
speed of the stirrers to double increases the power consumption remains same in minima.

In the case of contra-rotating Isobars are shown for half speed to double speed display
symmetry patterns at low inertial value and asymmetric configuration at higher value of
inertia. When increases the speed of stirrers from half to double, no symmetry break-up is
observed but at higher inertia, introducing the motion of stirrers from half speed to double
speed of the stirrers effective changes has been observed in the stresses and other variables.

Minima and maxima for velocity gradient, shear-rate, shear-stress, first stress difference
and power consumption in the case of mix-rotating stirrers, increase in the speed of stirrers
from half to double, increase in the minima is observed. At low inertial value, Re = 0.08,
this increase is almost double, however, at higher value of inertial, Re = 8, is approximately
three times.

Through the predictive capability generated, we shall be able to relate this to mixer design
that will ultimately impact upon the processing of dough products. Promising future direc-
tions of this work are investigation of rotation of two stirrers case in co-rotating, contra-
rotating and mix-rotating directions, changing material properties using non-Newtonian
fluids and further introducing agitator in concentric configured stirrers in future.
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FIGURE 3. Graphs of power and work done for stationary stirrers for
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FIGURE 4. Contour plots of Velocity gradient, Shear-rate, Shear stress
and Power for co-rotating stirrers with half speed for Newtonian ﬂu1d
with increasing Reynolds number.
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Re=8.0

FiGURE 10. Contour plots of Velocity gradient, Shear-rate, Shear stress
and Power for contra-rotating stirrers with half speed for Newtonian fluid
with increasing Reynolds number.
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FIGURE 11. Graphs of power and work done for contra-rotating stirrers
with half speed for Newtonian fluid with increasing Reynolds number.
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FIGURE 12. Contour plots of Velocity gradient, Shear-rate, Shear stress
and Power for contra-rotating stirrers with same speed for Newtonian
fluid with increasing Reynolds number.
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FIGURE 13. Graphs of power and work done for contra-rotating stirrers
with same speed for Newtonian fluid with increasing Reynolds number.
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and Power for mix-rotating stirrers with half speed for Newtonian fluid
with increasing Reynolds number.
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FIGURE 20. Contour plots of Velocity gradient, Shear-rate, Shear stress
and Power for mix-rotating stirrers with double speed for Newtonian
fluid with increasing Reynolds number.
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1. INTRODUCTION

A continuous complex-valued function f = u + iv defined in a simply connected com-
plex domain D is said to be harmonic in D if both v and v are real harmonic in D. In any
simply connected domain we can write f = h + g, where h and g are analytic in D. We
call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition
for f to be locally univalent and sense-preserving in D is that {h'(z)| > |¢'(2)|, z € D.
See Clunie and Sheil-Small [2], for more basic results on harmonic functions one may
refer to the following standard introductory text book Duren [3], see also Ahuja [1] and
Ponnusamy and Rasila ([6], [7]). Denote by Sy the class of functions f = h + g that
are harmonic univalent and sense-preserving in the unit disc U = {z : |z| < 1} for which
f(0) = f,(0) —1=0. Then for f = h + g € Sy we may express the analytic functions
h and g as

h(z)=z+ ) a2, g(z) = bez®, [by] < 1. (1.1)
k=2 k=1

The differential operator D™ was introduced by Salagean [8]. For f = h + g given by
(1.1), Jahangiri et al. [4] defined the modified Salagean operator of f as

D™f(z) = D™h(2) + (—1)"D™g(2) (1.2)
69
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where -~ -~
D™h(z) =z + Z k™agz* and D™g(z) = Z E™b2".
k=2 k=1

For0<a <1, m€ N, n€ Ny, m>nand z € U, suppose Sg(m,n,a) denote
the family of harmonic functions f of the form (1.1) such that

Re { g:}{((zz)) } >a (1.3)

where D™ f is defined by 1.2).
Further, let the subclass S g (m,n,a) consist of harmonic functions f,, = h + g, in
Sz (m,n,a) so that h and g,, are of the form

oo oo
h(z) =2z — Zakzk, gm(2) = (-1)™! Z bie2®, ar, by > 0. (1.4)
k=2 k=1
The classes Sg(m,n, ) and Sg(m, n, ¢) were studied by Yalcin [9].
Let us define the convolution of two harmonic functions. For harmonic functions of the
form

fm(z) =2 — Zakzk + (=1)™1 Z bz

k=2 k=1

and -~ -~
Fro(z)=2z—- Z ApZ® + (-1)m ! ZBkEk

k=2 k=1
we define the convolution of two harmonic functions f,,, and F;,, as

o0 o0
(fm * Fn)(2) = fm(2) ¥ Frn(2) = 2= Y _ axAgz® + (-1)™ 1Y "bpBpz*.  (1.5)
k=2 k=1
Recently Yalcin [[9], Theorem 6] has obtained the following result for convolution of
two functions in class Sg(m,n, c).
Theorem A.For 0 < 8 < o < 1let f, € Sg(m,n;e) and F,,, € Sg(m,n; B). Then
fm * F € _§H(m,n;a) - §H(m:n;ﬂ)-
In the present paper, motivated with the work of Kumar [5], we prove the following
theorem and then we critically observed that it improves the above stated theorem of Yalcin

[9].
Theorem 1. Let the functions

Cfm@=z2= S e+ (DY bz (ar b 2 0)
k=2 k=1

and -~ -
Fn(2) =z- Y Apz+ (-1)™ 'Y Biz*  (Ak, Br > 0)
Tk=2 k=1
belong to the classes Su(m,n;a) and Sg(m,n; B) respectively. Then (fr * Fin)(2) €
Su(2m, m+n; o) (if m is an even integer) and (f, * Fip )(2) € Su(2m—1,m+n—1;a)
(if m is an odd integer).

To prove this theorem we require the following lemmas. Lemma 1 and 2 are due to
Yalcin [9].
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- Lemma 2. A function f.,(2) of the form (1.4) belongs to the class S (m, n; a) if and only

if

o0 o0

k™ — ak™ kM (—1)m ok

Y+ (D)™ ok <1,
l—«a l—a

k=2 k=1

Lemma 3. Sg(m,n;a) € Sp(m,n;8), if0<f<a<l.

Lemm34. (i) Su(2m, m + n; a) C ?_H(m, n; @), (if m is an even integer).
(ii) Sg(2m —1,m+n—1;a) C Su(m,n; ), (if m is an odd integer).

Proof. Proof _9f Lemma 4(i)
Let f, € Sg(2m, m + n; a) then by using Lemma 2 we have

& k2m _ qfmtn s kZm_ -1 2m—(m+n) . .m+n
S e N e

k=2 k=1

= k(K™ — ok™ k™ (k™ — (=1) k™
=>Z ( - )ak+z ( ( ) a)

l—-«a

by <1.
k=2 ; k=1
Now

— l1—«o
k=2 k

B St U A i
k=1

1

£ 1- l—-«o
<1, [Using (1.6)].

Thus fr, € Sg(m,n5a):
The proof of Lemma 4(i) is established.

(1.6)

O

Proof. Proof of Lemma 4(ii) The proof of Lemma 4(ii) is similar to that of Lemma 4(i),

hence it will be omitted.

2. PROOF OF THE THEOREM 1.

O

Here we only prove the Theorem 1 for the case when m is an even integer. For the case
when m is an odd integer one can prove the Theorem 1 in similar way. Therefore it is

omitted.
Proof. Since fi,(2) € Sg{m,n; ), then by using Lemma 2 we have

o0 o0
k™ — ak® k™ — (—1)" "k
L 5 _—aak + 5 ( ) “ bk S 1. PR
l1-a l-a
k=2 k=1

Similarly F,,,(z) € Sg(m,n; 8), we have

o km — ,Bkn ad km (—l)m_nﬂkn
ZTTA’”LZ - By <1.
k=2 k=1

Bk

Therefore k"‘;ﬁ A <1L,Vk=2,3...

@
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— Bk™
_ < =
=5 A <1,Vk=2,3
and
k™ — (_l)m—n,Bkn
1-8

Now, for the convolution function f,, * F},, we have

B, <1,Vk=1,2,3...

0 k2m _ qfmtn _ (_1)2m—(m+n)akm+n

Z T akAk+Z — by By,

k=2
= k™ k — ak™ km(E™ — (—1)™ " ak™
:Z ( a )akAkJrZ ( ()" " )kak
l—« -
k=2 k=1
=, [ k™ — Bk™ k™ — ak™
<
(5 w =)
k=2
e m nQLn km _ (—1)ym—nqkm
3 () ()
= l-«
> k™ — ak™ k™ — (=1)" " "Pak™
SZ ak+z (1_) be
k=2 k=1
1, [Using (2.1)].

Therefore, we have

(fm * F)(2) € Su(2m,m + n;a) (if m is an even 1nteger)

Similarly

(fm * Fn)(2) € Sg(2m — 1,m + n — 1;¢) (if m is an odd integer). O

IMPROVEMENT OF YALCIN’S RESULT

In this section, we consider the following two cases and in each case, we observe that
our result improves the result of Yalcin [[9], Theorem 6].
Case (i) When m is an even integer.
Case (ii) When m is an odd integer.

Here we discuss these cases one by one.
Case (i) When m is an even integer our Theorem states that (f,, * Fi,)(2) € Sg(2m,m+
n; @), whereas result of Yalcin gives (f,, * F)(2) € Sg(m,n; a). But by Lemma 3 and
4(i) we have Sg(2m,m + n;a) C Sg(m,n;a) C Sg(m,n;B). Therefore our result
provides smaller class in comparison to the class given by Yalcin to which (fy, * Fi)(2)
belongs. ‘
Case (ii) When m is an odd integer we use our result ( f,, * F,)(2) € Sg(2m — 1,m +
n—1;@). Since Sg(2m — 1,m+n — 1;a) C Sg(m,n;a) C Sy(m,n; 8) (by Lemma
3 and 4(ii)). Our result provides better estimate in this case also.

Hence we conclude that for all values of m € N = {1,2,3...} our result improves the
result of Yalcin [[9], Theorem 6].

Acknowledgement: The authors are thankful for the referee for his valuable comments
and suggestions.
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Abstract. It is well known that G = (2,3 : 22 = y® = 1) represents the
modular group PSL(2,Z), where z : z - =L,y : z — 2L are linear

fractional transformations. Let n = k?m, where k is any non zero integer
and m is square free positive integer. Then the set

®*(v/n) :={a+\/ﬁ ta,c,b= azc—n € Z and (a,b,c) = 1}

c
is a G-subset of the real quadratic field @ (y/m) [12]. We denote o =
“—"'c‘—/—ﬁ in @ *(1/n) by a(a,b,c). For a fixed integer s > 1, we say that
two elements a(a, b, c), o/ (a’,b’, ') of @ *(/n) are s-equivalent if and
only if @ = d’ (mod s), b = b’ (mod s) and ¢ = ¢’ (mod s). The class
[a, b, c] (mod s) contains all s-equivalent elements of @ *(\/n) and E?
denotes the set consisting of all such classes of the form [a, b, ¢] (mmod s).
In this paper we investigate proper G-subsets and G-orbits of the set
@*(y/n) under the action of Modular Group G.

AMS (MOS) Subject Classification Codes: 05C25, 1 1E04, 20G15
Keywords: Real quadratic irrational number, congruences, quadratic residues, linear
-fractional transformations.

1. INTRODUCTION

An integer m > 0 is said to be square free if its prime decomposition contains no re-
peated factors. It is well known that every irrational member of @ (1/m) can be uniquely
expressed as %@ where n = k%m for some integer k and a, “2;" and c are relatively
prime integers.

: * _ +vn | _ a*— _ .
The set @ *(\/n) = {*2X~ : a,¢,b = 2 € Z and (a,b,c) = 1} is a proper G-
subset of @ (v/m) [12]. If a = “+c‘/'_‘ anda = %’_‘ have different signs, then « is called
. 75
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an ambiguous number. These ambiguous numbers play an important role in the study of
action of G on @ (/) U {00}, as Stab, (G) are the only non-trivial stabilizers and in the
orbit «F, there is only one (up to isomorphism).

G. Higman (1978) introduced the concept of the coset diagrams for the modular group
PSL(2,7Z) and Q. Mushtaq (1983) laid its foundation. By using the coset diagrams for the
orbit of the modular group G = (z,y : 2 = 3 = 1) acting on the real quadratic fields
Mushtaq [12] showed that for a fixed non-square positive integer n, there are only a finite
number of ambiguous numbers in € *(+/n), and that the ambiguous numbers in the coset
diagram for the orbit o form a closed path and it is the only closed path contained in it.
Let €' = € U {%oo} be the extended complex plane. The action of the modular group
PSL(2,Z) on an imaginary quadratic field, subsets of €”, has been discussed in [11]. The
action of the modular group on the real quadratic fields, subsets of €, has been discussed
in detail in [2], [12] and [13]. The exact number of ambiguous numbers in @ *(/n) has
been determined in [7], [15] as a function of n. The ambiguous length of an orbit o is
the number of ambiguous numbers in the same orbit [7], [15]. The Number of Subgroups
of PSL(2,Z) when acting on F}, U {oo} has been discussed in [14] and the subgroups of
the classical modular group has been discussed in [10].

A classification of the elements (a+ /p)/c, b = (a® —p)/c, of @*(,/P), p an odd prime,
with respect to odd-even nature of a, b, ¢ has been given in {3]. M. Aslam Malik et al.
[8] proved, by using the notion of congruence, that for each non-square positive integer
n > 2, the action of the group G on a subset @*(/Tt) of the real Quadratic field @ (v/m)
is intransitive.

If p is an odd prime,then ¢ #0 (mod p) is said to be a quadratic residue of p if there exists
an integer u such that u? = t (mod p).

The quadratic residues of p form a subgroup R of the group of nonzero integers modulo p
under multiplication and |R| = (p — 1)/2. [1]

Lemma 1. [fry,72 € R, n1,ne& R (r1,r9 are quadratic residues, and n1,ny are qua-
dratic non-residue, Then

(a) nyry is a quadratic non-residue.

(b)ning is a quadratic residue.

(c)rirq is a quadratic residue.

In the sequel, g.r and g.nr will stand for quadratic residue and quadratic non-residue
respectively. The Legendre symbol (a/p) is defined as 1 if a is a quadratic residue of p
otherwise it is defined by —1. [1]

We denote the element o = #of @ *(v/n) by afa,b,c) and say that two elements
a(a,b,c)ando/(a’, V', ') of @* (/n) are s-equivalent (and write a(a, b, ¢) ~5 ' (a’, ¥, )
ora ~ ¢)ifandonly if a = a' (mod s), b = b’ (mod s) and ¢ = ¢’ (mod s). Clearly the
relation ~, is an equivalence relation, so for each integer s > 1, we get different equiva-
lence classes [a, b, ] modulo s of @*(/n). [8]

Let E; denote the set consisting of classes of the form [a,b,c] (mod s), n modulo s
whereas if n = i(mod s) for some fixed i € {0,1,...,s — 1} and the set consisting of
elements of the form [a, b, c| with n = i (mod s) is denoted by E? (or E}). Obviously
USZIE: = E, and E!NEJ = ¢fori# j. [6]

The classification of the real quadratic irrational numbers by taking prime modulus is very
helpful in studying the modular group action on the real quadratic fields. Thus it becomes
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interesting to determine the proper G-subsets of @*(1/n) by taking the action of G on the
set @*(/n) and hence to find the G-orbits of @*(,/n) for each non square n.

2. MODULAR GROUP G ACTING ON @*(/n).

In [8], it was shown that the action of the group on § *(+/2) is transitive, whereas the
action of G on @ *(\/n), n # 2 is intransitive. Specifically, it was proved with the help
of classes [a, b, | (mod 22) of the elements of @*(,/n) that @*(\/n), n #2 (mod 4), has
two proper G-subsets.

Q. Mushtaq [12], In the case of PSL(2,13), showed one G-orbit of length 13 in the coset
diagram for the natural action of PSL(2, Z) on any subset of the real projective line. In [6]
it was proved that there exist two proper G-subsets of @*(1/n) when n = 0 (mod p) and
four G-subsets of @ *(1/n) when n = 0 (mod pq). In the present studies, with the help
of the idea of quadratic residues, we generalize this result and prove some crucial results
which provide us proper G-subsets and G-orbits of @*(\/n). .

We extend this idea to determine four proper G-subsets of @*(1/n) with n = 0 (mod 2pq).

Lemma 2. Let n = 0 (mod 2pq) where p and q are two distinct odd primes, then the sets
={a€@*(vn): (c/pq) = Lor (b/pg) =1},
={a € Q*(vn): (c/p) = —1or (b/p) = —L with (c/q) = 1or (b/q) =1},
S3 = {a € @*(v/n) : (¢/p) = 1or (b/p) = Lwith (c/q) = —1or (b/q) = -1},
and Sy = {a € @*(v/n) : (¢/p) = —~1 or (b/p) = —L with (¢c/q) = —1or (b/q) = -1}
are four proper G-subsets of @*(\/n).

Proof. Let “—tiﬁ € @*(y/n) and n = 0 (mod 2pq), then
a® = be (mod 2pq) 2.1)

where a, b, ¢ are belonging to the complete residue system {0, 1,2, ..., 2pq — 1}.
The congruence ( 2. 1 ) implies a® = bc (mod 2), a = bc (mod p) and a® = be (mod q) .
Since 1 is the only quadratic residue of 2 and there is no quadratic non-residue of 2. Thus
by Lemma 1.1 the quadratic residues and quadratic non residues of pg and 2pq are the
same. We know that, if (£, m) = 1 and m = 2pq, then the congruence z2 = t (mod m) is
solvable and has four incongruent solutions if and only if £ is quadratic residue of m [1],
and in this case congruence ( 2. 1) is solvable and has exactly four incongruent solutions.
If a = b = ¢ and each of a, b, ¢ are quadratic residue of pq then there exist four distinct
classes

[a,b, ], [~a,b, ], [a, —b, —], [~a, —b, —c] (mod pq)
Thus for each member [a, b, c| (mod pg), we have four cases.
case(7) The classes [a, b, ¢| (mod pq) with (b/pq) = 1, Then all these classes are contained
in Sl
case(i7) The classes [a, b, ] (mod pq) with (b/p) = —1, (b/q) = 1, Then all these classes
are contained in S,.
case(iii) The classes [a, b, c| (mod pg) with (b/p) = 1, (b/q) = —1, Then all these classes
are contained in S3.
case(iv) The classes [a, b, ] (mod pq) with (b/p) = —1, (b/q) = —1, Then all these
classes are contained in Sj.
As z(a) = _‘Hgﬁ = ‘“;ﬁ, where a; = —a, by = ¢, ¢; = b and y(a—%ﬁ) =
”‘”’Z*"/ﬁ = “21'2‘/5, where

ay=—a+b, bo=—-2a+b+c,andcy =0
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then by the congruence ( 2. 1) we have
(—a+b)? = (—2a+ b+ c)b (mod p) 2.2

Since the modular group PSL(2, Z) has the representation G = (z,y : 72 = y3 = 1) and
every element of G is a word in the generators z, y of G, to prove that .S; is invariant under
the action of G, it is enough to show that every element of .S; is mapped onto an element
of S; under  and y. Thus clearly by the congruences ( 2. 1) and ( 2. 2 ) the sets Sy, Sy,
Sz and S are G-subsets of @*(/n). O

Remark 3. Since the quadratic residues and quadratic non residues of pgq and 2pg are
the same. Therefore the number of G-subsets of @ *(/n) when n = 0 (mod pg) or
n = 0 (mod 2pq) are same.

Example 1. In the coset diagram for @*(/15) there are four G-orbits namely

(VIB)S, (-VIB)S, ()6 ana (VD)0

and similarly there are four G-orbits for Q*(v/ 30) namely
V30 V30
(vV30)%, (-v30)°, (_2_)0. and (—3)0'
In the closed path lying in the orbit (v/15)C, the transformation
g = (y2)*(*z) (yz)°

fixes k = /15 that is ((yz)3(v%x)(yz)3)(k) = k, and so gives the quadratic equation
k% — 15 = 0, the zeros, ++/15, of this equation are fixed points of the transformations g.

Let k is an ambiguous number then (k) is also ambiguous but one of the numbers y(k)
or y2(k) is ambiguous. The orientation of edges in the coset diagram is associated with
the involution = and the small triangles with y which has order 3. One of k and z(k) is
positive and other is negative but one of k, y(k) or y?(k) is negative and the other two
are positive. We use an arrow head on an edge to indicate its direction from negative to a
positive vertex. The table 1 shows the details of the orbits o, transformations which fixes
o, and the ambiguous lengths of each orbit.

TABLE 1. The Orbits of & € ©*(/n).

G-orbits | Transformations | Ambiguous Length

(V15)° | (yz)’(y’z)(yx)® 14
(=V15)¢ | (y2)’(’z)(y2)® 14
()¢ | Go)@*n)’we) 10
(D¢ | n)*2)’we) 10

(V30)° | o) ey (o)’ 2
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G-orbits Transformations Ambiguous Length
(=vB0)° | (y2)°(2)*(y)® 24
(E)C | (o) (v%x) (yz)?(v%x) (yz)? 16
(E)C | (y2)2(vPx)(y)*(y%x) (yz)’ 16

Now we extend this idea when n = 0 (mod p1p2...p;).

Theorem 4. Let n = 0 (mod pyps...pr), where p1,ps, ...p, are distinct odd primes, then
there are exactly 2", G-subsets of @*(/n).

Proof. Let %@ € @*(/n) and n = 0 (mod p1ps...p,;) where p1, ps, ...p, are distinct
odd primes, then a? — n = bc gives , o
a® = be (mod p1ps..p;) =~ (2.3)
The congruence ( 2. 3 ) implies a? = bc (mod p,),
a® = be (mod ps), ..., and a® = be (mod p,.).
We know that, if (t,yn) = 1 and m = p;ps...p,, then the congruence =2 = t (mod m)
is solvable if and only if ¢ is quadratic residue of m [1], and in this case congruence (
2. 3 ) is solvable and has exactly 2" incongruent solutions. Since all values of b or ¢

which are quadratic residues and quadratic non-residues of m lie in the distinct G-subsets
and m is the product of r distinct primes, Thus consequently we obtain 2", G-subsets of

Q*(v/n). 0

Corollary 5. Let n = 0 (mod 2p;1ps...p,) where py, ps, ...p, are distinct odd primes, then
there are exactly 27, G-subsets of @*(\/n).

Proof. Let %@ € @*(y/n) and n = 0 (mod 2p;p2...pr) Where p1, pa, ...p, are distinct
odd primes, then '
a=bc (mod 2p1p3...py) Q2.4
The congruence ( 2. 4 ) implies a? = be(mod 2), a* = be (mod py),
a?=be (mod p2), ..., and a2 = be (mod p,.)
Smce 1 is the only quadratic residue of 2 and there is no quadratic non-residue of 2. Thus

by Lemma 1the quadratic residues and quadratic non residues of p1 p2...pr and 2p1pa...py
are same. Hence the result follows by the Theorem 4 . O

Remark 6. The number of G-orbits of @ *(/n) when n = 0 (mod p1ps2...p;) or n =
0 (mod 2p; ps...p,) are same.

Example 2. Take n = 3.5.7.11 = 1155, Under the action of G on € *(+/1155) there are
sixteen G-orbits of @*(v/1155) namely

(VTE)©, (YER)e, (YB)s (VIR
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V1155, V1155 .o V1155 o V1155 4
(28 ()% ()8 )
1155 V1155, V1155, 5 V1155 4
()% % C)° )
1155 V1155, V1185 o V1155
()% C)% )0 C50)°

Similarly for n = 2.3.5.7.11 = 2310, Under the action of G on Q*(+/2310) there are
sixteen G-orbits of @*(v/2310) namely

VETE, (200, (Be (VB0

(B)e (V20 (VEI0)6, (VD)
V2310, V2310, V2310, ,v2310
o) o) ) (B

2310 V2310, /2310 V2310
( " )%, ( 11 )%, ( T )%, ( ~53

( ),

).

Theorem 7. Let h = 2k + 1 > 3 then there are exactly two G-orbits of @*(\/2*) namely

(2¥v2)C and 2k‘/_)

Proof. Let “tY® ¢ @*(V/2%). Then we have a? — 2" = bc (mod 2*). This implies that
a? = be (mod 2"). We know by [1] that the congruence a? = bc (mod 2") is solvable if
and only if bc = 1 (mod 8), Moreover the quadratic residue of 2%, & > 3 are those integers
of the form 8! + 1 which are less than 2. Since all values of b or ¢ which are quadratic
residues and quadratic non-residues of 2" lie in the distinct orbits. Thus the classes [a, b, c]
(modulo 2") with b or ¢ quadratic residues of 2" lie in the orbit (2¥1/2)€ and similarly
the classes [a, b, ¢] (modulo 2") with b or ¢ quadratic non-residues of 2" lie in the orbit
(gk—?)G, This proves the result. O

Example 3. There are exactly two G-orbits of Q*(\/27) namely (23v/2)€ and (23_‘{5)6',
In the closed path lying in the orbit (231/2)C, the transformation :
(yz) ' (y%x)3 (yz)® (y2x)3 (yz) ! fixes 23+/2. Similarly in the closed path lying in the orbit
(33_—‘{5)(; the transformation (yz)'! (y* 1)3(yz)5(y z)3 (yx)!? fixes 2 ‘/_.

3. ACTION OF THE SUBGROUP G* = (yz) AND G** = (yz,y%z) ON @*(\/n).

Let us suppose that G* = (yz) and G** = (yr,y?z) are two subgroups of G. In this
section, we determine the G-subsets and G-orbits of § *(f ) by subgroup G* and G**
acting on @*(y/n). Let yz(a) = a + 1 and y?z(a) = 51 Thus yz("+‘/_) = %@,
witha; = a+c¢, by = 2a+b+c¢, ¢; = cand yzz(‘”‘c‘/_) = ‘“j;/_,wnh az =a+b, by =
b,andcy =2a+b+ec.

In the next Lemma we see that the transformation yz fixes the classes [0, 0, ¢] (modulo p)
and the chain of these classes help us in finding G*-subsets of @* (/).

Lemma 8. Let p be any prime, n = 0 (mod p), Then for any k > 1, (yz)*[0,0,c] =
[ke, k2c, ¢] (mod p) and in particular (yz)?[0,0, c| = [0, 0, c] (mod p).
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Proof. Let a = [0,0,¢] (mod p) be a class contained in Eg. Applying the linear frac-
tional transformation yz on « successively we see yz[0,0,c] = [c, ¢, d], (yz)?[0,0,c] =
[2¢,4c, d], (yz)3[0,0, ] = [3¢, 9c, ] continuing this process k-times we obtain
(y2)*[0,0,¢] = [ke, k?c, ] (mod p)

In particular for & = p, kp = 0 (mod p) and k%p = 0 (mod p). Thus we get (yz)?[0, 0, c|
[0,0, c] (mod p).

Lemma 9. Let p be an odd prime, n = 0 (mod p) and G* = (yx), Then the sets

Ay = {a € Q"(vA) : (¢/p) =1}, Az = {a € @*(vA) : (c/p) = ~1},

Ci ={ae€@*(vn):c=0(modp)with (b/p) =1}, C2 = {a € @*(V/n) : c =
0 (mod p) with (b/p) = —1},

are G*-subsets of @*(\/n).

Proof. Forany a = # € A; with n = 0(mod p), then
a’= be(mod p) 3.5

‘We have two cases.

(i) If a = 0 (mod p), The congruence ( 3. 5 ) forces that bc = 0 (mod p), Then either
b = 0 (mod p) or ¢ = 0 (mod p) but not both. So in this case a belongs to the class [0, b, 0]
or [0,0, ¢] modulo p. '

(ii) If @ #0 (mod p), a® = bc (mod p), Then ( 3. 5 ) forces that either both b, c are
quadratic residues of p or both quadratic non-residues of p.

Asyz : [a,b,c] = [a + ¢,2a + b + ¢, c], Then it is clear that the set A; is invariant under
the action of the mapping yz, So the set A; is a G*-subset @ *(y/n). Similarly the set A,
is G*-subset of @*(1/n).

Again for any o = @ € C\ by congruence (3. 5) ¢ = 0 (mod p) = a = 0 (mod p),
with b #0 (mod p), so the classes belonging to the set C; are of the form [0, b, 0] with b
quadratic residue of p. Since the mapping yz fixes the classes [0, b, 0]. Thus clearly the set
C is a G*-subsets. Similarly the set C; is G*-subsets of @*(/n). |

In the next theorem we determine two G-subsets of @ *(1/n) by using A;, Az, C; and
C> as given in Lemma 9

Theorem 10. The sets S; = Ay U Cy and Sy = Ay U Cy are two G-subsets of @*(\/n).

Proof. Let a = ‘—”'c—‘/ﬁ € S then either a € A; or a € C; with n = 0 (mod p). Thus
it is clear that the classes [a, b, ¢] (mmod p) with b or ¢ quadratic residues of p is contained
in A; UC;. By Lemma 3.1 yz fixes the classes [0,0, ¢| (modulo p). Also the classes
belonging to A;, As are connected to the classes belonging to C;, Ch, respectively under
z. Since the modular group PSL(2,Z) has the representation G = (z,y : 22 = y° = 1)
and every element of G is a word in its generators z, y, to prove that S is invariant under
the action of G, it is enough to show that every element of S; is mapped onto an element
of Sy under z and y. Thus clearly we see that S; = A; U C; and S; = Ay U Cy are both
G-subsets of @*(\/n). . O

In view of the above theorem we observe that for n = 2 the action of G on @*(\/n) is
transitive. Since 1 is the only quadratic residue of 2 and there is no quadratic non-residue
of 2, Therefore the set S; becomes empty and 5 is the only G-subset of @* (\/5). While
the action of G on @*(\/n), n # 2 is intransitive. -

g
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Example 4. Leta = # € @*(\/n), withn = 0 (mod 5), be of the form
[a, b, ¢| (mod 5). In modulo 5, the squares of the integers 1,2,3,4 are

P=4=1and2?*=32=4
Consequently, the quadratic residues of 5 are 1,4, and the non residues are 2,3. Thus A,
consists of elements of @*(/n) of the form
[0,0,1],[0,0,4],[1,1,1],[4,1,1],[2,4,1],(2,1,4],3,1,4], [3,4, 1], [1,4,4],
[4,4,4] mod5 .
Then A; is invariant under yz, Thus Ay is G*-subset of @*(\/n).
The elements of Ag are of the form
[0,0,2,[0,0,3],(2,2,2],[3,2,2],[2,3,3],[4,3,2],
4,2,3],[1,2,3),[1,3,2] and [3, 3, 3] mod 5 only.
Again As is invariant under yx, Thus As is also G*-subset of @* (/).
The elements of Cy are of the form [0, 1, 0] and [0, 4, 0], and the elements of Cy are of the

Jorm [0,2,0] and [0, 3, 0] Thus C} and Cy are G*-subsets.
Then clearly the sets Sy = A; U Cy and Sy = Ay U Cy are two G-subsets of @* (\/— ).

In the next lemma we find the conditions when 7 is quadratic residue of p.

Lemma 11. For any a(a,b,c) € @*(\/n), then the following statements are equivalent
(i) n is quadratic residue of p
(ii) b or ¢ =0 (mod p).

Proof. Leta = # € Q*(y/n), then
a? —n = be (mod D) (3. 6)

Let bor ¢ =0 (mod p)
Then congruence ( 3. 6 )implies that
residue of p.

Conversely let n be quadratic residue of p then the congruence a? = n (mod p) must be
solvable. Now the congruence (6) holds only if b or ¢ = 0 (mod p). O

2 = n (mod p). This shows that n is quadratic

Further we see the action of G** = (yz,y%z) on @*(/n) with n quadratic residue of
p and determine four proper G**-subsets of §*(1/n).
Theorem 12. Let p be an odd prime and n is quadratic residue of p, let o = # €
@*(v/n) and G* = (yz,y*x), then the sets
G1={a € Q*(vn): (¢/p) =1}, G2 = {a € @*(Vn) : (¢/p) = -1},
are both G**-subsets of @*(/n).

Proof. Let a = @ € @*(v/n), with a®> — n = be (mod p), and a, b, c modulo p are
belonging to the set {0,1,2,...,p — 1}.

Let p be an odd prime with n quadratic residue of p, then by Lemma 11 either b= 0 (mod p)
or ¢ =0 (mod p).

Since yz : [a,b,¢] = [a+¢,2a+b+c,c|and y%x : [a,b,c] = [a+b,b,2a+b+ ¢, Since
every element of G** is a word in its generators yz, 42z, Then clearly the sets G, Go, are
two G**-subsets of @*(y/n). O

It is important to note that 37 is the smallest prime which have four G-orbits and all odd
primes less than 37 has exactly two G-orbits.
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Example 5. In the coset diagram for @*(/37), There are exactly four G-orbits of
Q"(V/37) given by (V3T)©, (MIT)S, (HPT)6, (S15(31)6

The Set S1 containing three orbits (v/37)C, (1+_*§97)G, (—1t§/3_7)G is a G-subset, While
the set Sy containing only one orbit (%3_7—)6‘ is another G-subset.

In the closed path lying in the orbit (v/37)C, the transformation

g1 = (y2)° (*2) " (y2)°
fixes k = /37, that is g1 (k) = ((yz)®(y?z)*2(yx)®) (k) = k, and so gives the quadratic

equation k? — 37 = 0, the zeros, ++/37, of this equation are fixed points of the transfor-
mations gi.

In the closed path lying in the orbit (1+5/W)G, the transformations

92 = (yz)*(v%2) (y2) (¥*2)° (yz) (v*z) (y2)?

fixes ] = 1¢2__\/3_7 and so gives the quadratic equation 1> — 1 — 9 = 0, the zeros, lig/3_7, of
this equation are fixed points of ga.
Similarly in the closed path lying in the orbit (H'_—*g3_7)c the transformation -

g3 = (¥2)*(v*2)* (yz) (v*2)* (yz)* () (y)

fixes (%ﬁ) and corresponding to the closed lying in the orbit (—1;;-7%/?)@ the transfor-
mation

94 = (y2) (%) (y2)*(y°x)* (yz) (v*2)* (yz)?
ﬁx oS ( 1+\/_ )
By [7], [15] we see that 7*(37) = 124, That is there are 124 ambiguous numbers in the
coset diagram for @* (~/37) while the ambiguous length of the orbits (v/37)C, (%ﬁ)c
(%ﬁ)c and (%) are 48, 28, 24 and 24 respectively.
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1. INTRODUCTION

The main problem in fuzzy mathematics is how to carry out the ordinary concepts to
the fuzzy case. The difficultylies in how to pick out the rational generalization from'the
large number of available approaches. It is worth noting that fuzzy ideals are different
from ordinary ideals in the sense that one cannot say which BCK-algebra element belongs
to the fuzzy ideal under consideration and which one does not. The concept of fuzzy sets
was introduced by Zadeh [13]. Since then these ideas have been applied to other algebraic
structures such as semigroups, groups, rings, modules, vector spaces and topologies. In
1991, Xi [12] applied the concept of fuzzy sets to BCK -algebras which are introduced
by Imai and Iséki [5] . In [1], Biswas introduced the concept of anti fuzzy subgroups of
groups. Modifying his idea, in [4], S. M. Hong and Y. B. Jun applied the idea to BCK
-algebras. They introduced the notion of anti fuzzy ideals of BCK “algebras. In this paper,
we introduce the notion of anti fuzzy implicative ideal of BCK -algebras, and investigate
some related properties.. We show that.in an implicative BCK-algebra, a fuzzy subset jsian,
anti fuzzy ideal if and only if it is an anti fuzzy implicative ideal. We show that; a:fuzzy
subset of a BCK-algebra-is a fuzzy. implicative ideal if and only if the complement -of this
fuzzy subset is an anti fuzzy implicative ideal. Moreover, we discuss the pre-image of anti
fuzzy implicative ideals. Finally, we introduce the notion of anti Cartesian'product of anti
fuzzy implicative ideals, and then we characterize anti fuzzy implicative ideals by it .

2. PRELIMINARIES

In this section we cite the fundamental definitions that will be used in the sequel:
85
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Definition 1. [6] An algebra (X, %, 0) of type (2,0) is called a BCK - algebra if it satisfies
the following axioms forall z,y,2 € X :

(1) ((xxy) * (zxy)) * (z*y) =0,

(i1) (z * (z *y)) xy = 0,

(fi)x xz =0,

(v)0*xz =0,

(w)zxy=0and yxz=0implyz=y

We can define a partial ordering < on X by z < yif and only if x xy = 0.

Proposition 2. [6] In any BCK-algebra X , the following hold forall z,y,z € X :
(D) (z*xy)*xz=(T*2)*y,
(i)z*y <z,
(fi)) x x 0 = z,
() (z*2)*x(y*2) <z *y,
W z*x(x*x(z*xy)=z*y,
(vi)x <y impliesz+z<y*xz and zxy < z* .

A BCK-algebra is said to be implicative if xx(y xz) =z forall z,y € X (see[6,9]).

Definition 3. [8] A non-empty subset I of a BCK-algebra X is called an ideal of X if it
satisfies

(11) 0el

(I)zxyeland yeIimply x€l.

Definition 4. [8] A non-empty subset I of a BCK-algebra X is called an implicative ideal
of X if it satisfies (I1)and (I3)xz € I whenever (z * (y*z))*xz€landz €I forall
z,y,z € X. :

Definition 5. [13] Let S be a non-empty set. A fuzzy subset A of S is a function A :S
— [0,1]. Let A be a fuzzy subset of S . Then for ¢ €[0,1], the ¢-level cut of A is the set
Ay = {z € S |A(z) >t} and the complement of A, denoted by A€ is the fuzzy subset
of S givenby A (z) =1 — A (z) forall z € S .(see [2,3,7]).

Definition 6. [12] A fuzzy subset A of a BCK-algebra is called a fuzzy subalgebra of X if
Az xy) >min{A(z),A(y)} forall z,y € X.

Definition 7. [12] Let X be a BCK-algebra. A fuzzy subset A of X is called a fuzzy ideal
of X if

(F1) A(0) > A(z),

(F3) A(z) >min {A(z*y),A(y)}, forall z,y € X.

Definition 8. [10] A fuzzy subset A of a BCK-algebra X is called a fuzzy implicative ideal
of X if it satisfies
(F1) and (F3) A(z) >min {A((z*(yxz)) *x2),A(2)} forall z,y,z € X.

Definition 9. [4] A fuzzy subset A of a BCK-algebra X is called an anti fuzzy subalgebra
of X if '
A(x*y) < maz {A(x),A(w)} forall z,y € X.

Definition 10. [4] A fuzzy subset A of aBCK-algebra X is called an anti fuzzy ideal of X
if

(A1) A(0) < A(e),

(A2) A(z) < maz {A(z*y),A(y)}, forallz,y € X.
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Proposition 11. [4] Every anti fuzzy ideal of a BCK-algebra X is an anti fuzzy subalgebra
of X. '

Definition 12. [4] Let A be a fuzzy subset of a BCK-algebra. Then for ¢ € [0, 1] the lower
t-level cut of A is the set
At={ze X|A(z) <t}

Definition 13. [4] Let A be a fuzzy subset of a BCK-algebra. The fuzzification of A%t €
[0, 1] is the fuzzy subset p 4: of X defined by

Definition 14. [11]Let f:X — Y be a mapping of BCK-algebras and A be a fuzzy subset
of Y . The map A/ is the inverse image of A under f if A (z) = A(f (z))Vz € X.

3. ANTI FUZZY IMPLICATIVE IDEAL

Definition 15. A fuzzy subset A of a BCK-algebra X is called an anti fuzzy implicative
ideal of X if it satisfies
(A1) and (A3) A(z) < max {A((z * (y*x)) * 2),A(2)} forall z,y,z € X.

Example 1. (1) Every constant function A :X — [0, 1] is an anti fuzzy implicative ideal
of . X (2) Let X = {0, a,b,c} be a BCK-algebra with Cayley table as follows:
*x10{alb|c

o
]

oloa|o

ool
o Q
o [==] Nl
[} =] N=n] o]

Let to,t; be such that ¢y < ¢;. Define A: X — [0,1] by A(0) = A(a) = A(b) =
to and A (c) = t; Routine calculations give that A is an anti fuzzy implicative ideal.

Proposition 16. Every anti fuzzy implicative ideal of a BCK-algebra X is order preserv-
ing. '

Proof. Let A be an anti fuzzy implicative ideal of a BCK-algebra X and let z,y € Xbe
such that x < y Then
A(z) < maz {A((@* (z%2)) xy) , A®)},
= maz {A ((z +y) * (z*2)), AW)},
=mar{A0x(z*xx)),Ay)}, -
—maz{A(0),AW)}=A@). O

Proposition 17. Every anti fuzzy implicative ideal of a BCK-algebra X is an anti fuzzy
ideal.

Proof. Let A be an anti fuzzy implicative ideal of a BCK -algebra X, so for all z,y,z €
X:
A(x) <mazx {A((z* (y*2))*2),A(2)},
Puttingin y =x,and z =y :
A(z) <maz {A((x*x) *xy), Ay}
=maz{A(z+y),A(Y)}. o

Combining Proposition 2.11 and 3.4 yields the following result.

Proposition 18. Every anti fuzzy implicative ideal of a BCK-algebra X is an anti fuzzy
subalgebra of X.
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Remark 19. An anti fuzzy ideal (subalgebra) of a BCK-algebra X may not be an anti
fuzzy implicative ideal of X as shown in the following example:

Example 2. Let X be the BCK-algebra in Example 3.2(2) and let to t1 t2 € [0, 1] be such
that tg t1t o Define A : X — A(0) = tg, A(a) = A(b) = t1 andA(c) = tp Routine
calculations give that A is an anti fuzzy ideal (subalgebra) of X. but not an anti fuzzy
implicative ideal of X because
A(a) =11 >maz {A((ax(bxa))*0),A4(0)}
= max {A(0),A(0)} = to.

Proposition 20. If X is implicative BCK -algebra, then every anti fuzzy ideal of X is an
anti fuzzy implicative ideal of X.

Proof. Let Abe an anti fuzzy ideal of an implicative BCK-al gebra X ,soforallz,z € X :
A(x) <maz {A(z*2),A(2)},

Since X is an implicative, then x * (y * ) = = forall z,y € X . Hence
A(z) <max{A((z x (y *z)) * 2) , A(2)},

This shows that A is an anti fuzzy implicative ideal of X. g

By applying Proposition 17 and 20 , we have

Theorem 21. If X is an implicative BCK-algebra, then a fuzzy subset A of X is an anti
fuzzy ideal of X if and only if it is an anti fuzzy implicative ideal of X.

Proposition 22. A fuzzy subset A of a BCK-algebra X is a fuzzy implicative ideal of X if
and only if its complement A€ is an anti fuzzy implicative ideal of X.

Proof. Let Abe a fuzzy implicative ideal of a BCK-algebra X, and letz,y, z € X . Then
A(0)=1-A(0)<1—A(z) = A°(z) and
A(z)=1-A(x) <1-min{A((zx(y*2)) x2),A(2)},
=1-—min{l —A°((z*(y*2))x2),1 - A°(2)},
=maz {A° ((z * (y xx)) * 2) , A° ()} .
So, A€ is an anti fuzzy implicative ideal of X. Now let A€ is an anti fuzzy implicative ideal
of X,and letz,y,z € X. Then
A(0)=1-A4°(0) > 1= A°(z) = A(z) and
A(z) —1A4°(z) < 1-maz {A°((z * (y *x)) x 2) , A° (2) },
=1-maz{l-A((z*x(y*x)) x2) 1 — A(2)},
=min{A((z*x(y*x)) *x2),4(2)}.
Thus, A is a fuzzy implicative ideal of X. d

Theorem 23. Let A be an anti fuzzy implicative ideal of a BCK-algebra X . Then the set
Xa={zeX |A(x)=A(0) },
is an implicative ideal of X.
Proof. Clearly0 € X . Letz,y,2 € Xabesuchthat (z % (z*y))x2€ X andz € X4.
Then
Az *(y*z)) xz) = Az) = A(0).
It follows that
A(z) < maz{A((z*(y * 2)) * ), A(2)}
=maz {A(0),A(0)} = A(0).
Combining Definition 15(A4,), we get A () = A(0) and hencez € X . g

Theorem 24. Let A be a fuzzy subset A of a BCK-algebra X. Then A is an anti fuzzy
implicative ideal of X if and only if for each t € [0,1] ,t > A(0), the lowert t-level cut A*
is an implicative ideal of X.
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Proof. Let A be an anti fuzzy implicative ideal of X and lett € [0,1] witht > A(0).
Clearly0 € A*. Let z,y,2z € X be such that (z * (y *z)) * 2 € At and 2z € A? .Then
A(z*(y*xx))*x2) <t ,A(z) <t,
hence

A(z) <max{A((z*(y*xz)) x2) A(2)} < t.
And so r € A . Hence At is an implicative ideal of X .
Conversely, let A is an implicative ideal of X, we first show A(0) < A (z) forall z € X.
If not, then there exists zo € X such that A (0); A (z) . Puttingt o = 4 {A(0) + A (o)}
then 0 < A(zg)it 0 jA(0) < 1. Hence 79 € A%, so that A% # &. But A% is an
implicative ideal of X. Thus 0 € A% , or A(0) < t g, a contradiction. Hence A (0) <
A(z) forall z € X . Now we prove thatA (x) < max {A((z * (y*)) * z) , A(2)} for all
z,y,z € X. If not, then there exists zy,y ¢, 2 0 € X , such that

A(z) > maz {A((zo * (yo * Zo)) * 20) , A (20)}
Taking so = & {A (o) +ma {((z0 * (yo * 70)) * 20) A (20} }

then so < A(zg) and

0 < maz{A((zo * (yo * o)) * 20)}i S0 < 1.
Thus we have s (A ((zo * (Yo * To)) * 20) and s { A (2¢). Which imply that
(%o * (yo * T0)) * Zgecy0 and zp € A®° But A°0is an implicative ideal of X . Thus
xg € A% or A (zq) < sg This is a contradiction, ending the proof. O

Theorem 25. If A is an anti fuzzy implicative ideal of a BCK-algebra X. Then . 4+ is also
an anti fuzzy implicative ideal of X where t € [0,1],¢,> A(0).

Proof. From Theorem 24, it is sufficient to show that (u4:)° is an implicative ideal of
X,where s € [0,1] and 5 > 144 (0). Clearly, 0 = (uy4:) Let 2,5,z € X be such that
(2% (y* 2)) % 2 € (uar)” and 2 € (ae)®
hence
pae ((z*(y*z))x2) <s ,
and
pat (2) < s.Weclaimthat z € (uat)or par (2) < s. I (z*(y*x))*z €
At and 7z € A?, then z € A? because A’ is an implicative ideal of X. Hence.
e (2) = A ()
< maz {A((z+ (y+2)) x2), A()},
= maz {pa ((x*(y*2))*2),p4: (2)} < s.
andsox € (pa:)’ MW (z*(yxx))*x2 ¢ Alorz € AY, then pa: ((z*(y*x))*x2) =0
or pa: (z) = 0 then clearly pa: (x) < s, and so z € (ua:)° . Therefore (p4:)° is an
implicative ideal of X. g

Theorem 26. Theorem 3.13. Let f :X — Y be a homomorphism of BCK-algebras.
If A is an anti fuzzy implicative ideal of Y , then AY is an anti fuzzy implicative ideal of X.

Proof.  Since A is an anti fuzzy implicative ideal of Y, then A (0) < A (f (z)) forany
z € X, andso, AT (0) = A(f(0)) = A(0) < A(f (x)) = Af (). Forany z,y,z € X,

we have:
Al (z) = A(f () <maz {A((f (@) * (f(y) * [ (2)) * [ (2)), A(f(2))},
=maz {A((f (z) * (f (y*2))) * f (2)), A(f (2))},
=maz {A((f (z* (y*2))) = f (2)), Af (2)},
=maz {A(f ((z * (y * z)) * 2)), A(f (=)},
= mazx {Af ((z*(y*xx))*2), AS (z)}
This completes the proof. (I}
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Theorem 27. Theorem 3.14. Let f: X — Y be an epimorphism of BCK-algebras.
If Af is an anti fuzzy implicative ideal of X , then A is an anti fuzzy implicative ideal of Y .

Proof. Lety €Y, there exists £ € X such that f () = y. Then
Ay) = A(f () = Af (z) > AT (0)
Let 2,3/, 2 € Y . Then there exist x,y,z € X . such that f (z
f(z) = 2’ . It follows that
Az') = A(f (z)) = Af (z) < maz {Af (@x(yxz))*2),

A(0).

)=, f(y) = o/ and

=maz {A(f ((z* (y*2)) * 2)), A(f (2))},
= maz {A((f (2) % (f (y #2))) * ] (2)), A(f (2))},
~ maz {A((f (&)« (7 (5) « f (2))) * £ (20), A(F (D}
— maz {A((2'+ (y x2')) % 2'), A ()}
Hence A is an anti fuzzy implicative ideal of Y. g

4. ANTI CARTESIAN PRODUCT OF ANTI FUZZY IMPLICATIVE IDEALS

Definition 28. Let A and p be the fuzzy subsets in a set- X. The anti Cartésian product
Axp: X x X —[0, 1] is defined by (A x w) (z,y) = maz {A(z),un(y)} forall
z,y € X.

Theorem 29. If A and u are anti fuzzy implicative ideals of a BCK-algebra X, then A X i
is an anti fuzzy implicative ideal of X x X.

Proof. letz,z’ € X
(A x 1) (0,0) = maz {A(0),1(0)}
<maz {\(z),p(x)} = A xu)(z,z)

For any (z,2'), (y,¥), (2,7} € X x X we have
(A x p) (z,2') = maz {A(z),p(z)}
< maz {maz { (z * (y*x))*Z),/\(Z)},mM {u(x #(y' =) 2'), 1 ()},
=maz {mazx {A(z* (y*xz))*2),u (@’ (¥ *2')) ")} ,maz {\(z),u(Z)}},
=maz {(A x p) ((z,2) * ((y,¥') * (z,2))) * ( )) (A xp) (2, )}

Hence A x p is an anti fuzzy implicative ideal of X x X g

Theorem 30. Let A and s be fuzzy subsets in a BCK-algebra X such that A x p is an anti
fuzzy implicative ideal of X x X Then:
(1) either A (z) > A (0) or p(z) < p(0) forallz € X ;
(i2) if A (xz) > A(0) forall x € X ,then either ) (z) > 1 (0) or p (z) > p(0);
(131) if u (z) > p(0) forall z € X, then either X (z) > A(0) or u(z) > A (0).

Proof. (i) Suppose that A (z);A (0) and g (y) |  (0) for some z,y € X. Then
(A 1) (@, ) = max {A (2, 1 (4))} § max {2 (0), 1 (0)} = (A, 1) (0,0) -
This is a contradiction and we obtain (7).
(%) Assume that there exist z,y € X such that A (z)jp (0) and u ()i 1 (0). Then
(A x 12) (0,0) = max {A (0), 2 (0)} = 1 (0).
It follows that
(A x p) (z,y) =max {A(z),p(y)}ip0)=(Axu)(0,0),
which is a contradiction. Hence (2¢) holds.
(#i1) Similar to (i%). d
Theorem 31. Let A and p be fuzzy subsets in a BCK-algebra X such that A x y is an anti

fuzzy implicative ideal of X x X. Then either p or X is an anti fuzzy implicative ideal of
X.
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Proof. By Theorem 30(¢), without loss of generality we assume that u (z) >  (0) for all
z € X. From (i) it follows that either A (x) > A (0) or p(z) > A (0).If o (z) > A(0)
forallz € X, then (A x p) (0,z) = max {A(0),p(z)} = p(z). Let (x,2'), (v,v'),

(2,72) € X x X, since A x p is an anti fuzzy implicative ideal of X x X .We have
(A x ) (2,2") < maz {(A x p) (((z,2") * (9,9') * (2, 7)) * (2,2)) , (A x ) (2, 2)},
—maz (A x 1) (2% (y *2)) % 2, (27 * (3 x2')) % 2), (A x ) (z,2)}-
Puttingz = y = z = 0, then
(') = (A x p) (0,27) < maz {(Ax p) (0, (2" * (v x2')) ¥ 2) , (A x 1) (0,2')},
— maz {maz {A(0), u (' (¢ * ) * 2)} ,maz {A(0),u(z)}},
=maz {p((z' * (y *2')) 2"}, p(2)}.
This proves that 4 is an anti fuzzy implicative ideal of X. The second part is similar. This
completes the proof. _ O

5. CONCLUSION

We discussed the notion of anti fuzzy implicative ideals of BCK-algebras and gave
several characterizations. Also, we introduced the notion of anti cartesian product of anti
fuzzy implicative ideals. Our defintions probably can be applied in other kinds of anti
ideals of BCK-algebras.
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