Estb. 1882

University of the Punjab

MATH-410 Analytical Dynamics

Lagrange’s Theory of Holonomic Systems  Generalized coordinates
 Holonomic and non-holonomic systems
 D’Alembert’s principle, d-delta rule
 Lagrange equations
 Generalization of Lagrange equations
 Quasi-coordinates
 Lagrange equations in quasi-coordinates
 First integrals of Lagrange equations of motion
 Energy integral
Hamilton’s Theory
 Hamilton’s principle
 Generalized momenta and phase space
 Hamilton’s equations
 Ignorable coordinates, Routhian function
 Derivation of Hamilton’s equations from a variational principle
 The principle of least action
Lagrange’s Theory of Non-Holonomic Systems
 Lagrange equations for non-holonomic systems with and without Lagrange multipliers
 Hamilton’s Principle for non-holonomic systems
Canonical Transformations
 The equations of canonical transformations
 Examples of canonical transformations
 The Lagrange and Poisson brackets
 Equations of motion, infinitesimal canonical transformations and conservation theorems in the Poisson bracket formulation
Hamilton-Jacobi Theory
 The Hamilton-Jacobi equation for Hamilton’s principal function
 The harmonic oscillator problem as an example of the Hamilton-Jacobi method
 The Hamilton-Jacobi equation for Hamilton’s characteristic function
 Separation of variables in the Hamilton-Jacobi equation
Credit hours/ Marks:- 3

Reference Books

Download Course-Outline